HDU 6069 Counting Divisors
Counting Divisors
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/Others)
Total Submission(s): 1604 Accepted Submission(s): 592
For example, d(12)=6 because 1,2,3,4,6,12 are all 12's divisors.
In this problem, given l,r and k, your task is to calculate the following thing :
In each test case, there are 3 integers l,r,k(1≤l≤r≤1012,r−l≤106,1≤k≤107).
1 5 1
1 10 2
1 100 3
48
2302
/*
* @Author: Lyucheng
* @Date: 2017-08-03 13:13:45
* @Last Modified by: Lyucheng
* @Last Modified time: 2017-08-04 11:25:19
*/
/*
题意:给你一个区间[l,r]让你求区间内每个数的k次方因子数的总和 思路:比赛的时候想出来 i^k的因子是 (n1*k+1)*(n2*k+1)*...*(np*k+1),但是没想出来怎么优化,素数枚举
很烦,四场比赛每次差一点,比赛的时候想的是枚举[l,r]之间的数,优化到8300ms,实在没法优化了,应
该反过来想,枚举从[l,r]的素因子,因为i素因子的个数远小于i,大多数在sqrt i内,最多只有一个在sqrt i
之外。
*/
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h> #define LL long long
#define mod 998244353
#define MAXN 1000005 using namespace std; int t;
LL l,r,k;
LL res;
LL d[MAXN];
LL pos[MAXN];
bool prime[MAXN];
LL p[MAXN];
int tol;
void init(){
tol=;
for(int i=;i<MAXN;i++){
prime[i]=true;
}
prime[]=prime[]=false;
for(int i=;i<MAXN;i++){
if(prime[i])
p[tol++]=(LL)i;
for(int j=;j<tol&&i*p[j]<MAXN;j++){
prime[i*p[j]]=false;
if((LL)i%p[j]==) break;
}
}
} int main(){
// freopen("in.txt", "r", stdin);
// freopen("out.txt", "w", stdout);
init();
scanf("%d",&t);
while(t--){
res=;
scanf("%I64d%I64d%I64d",&l,&r,&k);
for(LL i=l;i<=r;i++){
d[(int)(i-l)]=;
pos[(int)(i-l)]=i;
}
for(int i=;i<tol;i++){//枚举所有的素数
if(p[i]<=) continue;
LL cnt=(l+p[i]-)/p[i]*p[i];//找出[l,r]区间内的第一个p[i]的倍数
if(cnt-l<||cnt-l>r-l) continue;
for(int j=cnt-l;j<=r-l;j+=p[i]){
LL cur=;
while(pos[j]&&pos[j]%p[i]==){
cur++;
pos[j]/=p[i];
}
d[j]*=(cur*k+);
d[j]%=mod;
}
}
for(int i=;i<=r-l;i++){
if(pos[i]==)
res+=d[i];
else
res+=d[i]*(k+);
res%=mod;
}
printf("%I64d\n",res);
}
return ;
}
HDU 6069 Counting Divisors的更多相关文章
- hdu 6069 Counting Divisors(求因子的个数)
Counting Divisors Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/Oth ...
- hdu 6069 Counting Divisors 筛法
Counting Divisors Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/Oth ...
- HDU 6069 Counting Divisors —— 2017 Multi-University Training 4
Counting Divisors Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/Oth ...
- HDU 6069 Counting Divisors(唯一分解定理+因子数)
http://acm.hdu.edu.cn/showproblem.php?pid=6069 题意: 思路: 根据唯一分解定理,$n={a_{1}}^{p1}*{a2_{}}^{p2}...*{a_{ ...
- 2017ACM暑期多校联合训练 - Team 4 1003 HDU 6069 Counting Divisors (区间素数筛选+因子数)
题目链接 Problem Description In mathematics, the function d(n) denotes the number of divisors of positiv ...
- HDU 6069 Counting Divisors (素数+筛法)
题意:给定 l,r,k,让你求,其中 l <= r <= 1e12, r-l <= 1e6, k <= 1e7. 析:首先这个题肯定不能暴力,但是给定的区间较小,可以考虑筛选, ...
- HDU 6069 Counting Divisors(区间素数筛法)
题意:...就题面一句话 思路:比赛一看公式,就想到要用到约数个数定理 约数个数定理就是: 对于一个大于1正整数n可以分解质因数: 则n的正约数的个数就是 对于n^k其实就是每个因子的个数乘了一个K ...
- HDU 6069 Counting Divisors(2017 Multi-University Training Contest - Team 4 )
Output For each test case, print a single line containing an integer, denoting the answer. Sample ...
- hdu 6069 Counting divisors 公式+区间筛
比赛的时候把公式扣出来了,,但是没有想到用筛法算公因子,,默默学习一下.. 题解:设n=p1^(c1)p2^{c2}...pm^{cm},n=p1^c1*p2^c2...p ...
随机推荐
- Eclipse 版本选择
查看Eclipse的版本号: 1. 找到eclipse安装目录 2. 进入readme文件夹,打开readme_eclipse.html 3. readme_eclipse.html呈现的第二行即数字 ...
- 【京东账户】——Mysql/PHP/Ajax爬坑之产品列表显示
一.引言 实现京东的账户项目,功能模块之一,产品列表显示.要用到的是Apach环境,Mysql.PHP以及Ajax. 二.依据功能创建库.表.记录 创建库:jd 创建表:产品表 添加多条记录 /**产 ...
- Pro Flight YOKE 设备键位映射踩过的坑
背景 VR游戏项目.街机游戏项目7月阶段版本快要结束了,考虑到带有键鼠外设显得逼格比较Low,所以决定采用"高大上"的专业设备来进行游戏操作. 需求 需要将键盘鼠标操作的18个键位 ...
- sqlserver 缩小表空间
1. 保留需要的数据之新表中->TRUNCATE原表数据->还原之前保留的数据之原表中->压缩表空间 脚本类似如下 SELECT * INTO #keep FROM Original ...
- JAVA提高一:静态导入、可变参数、增强型for循环、装拆箱
国庆假期已结束,假期8天,全部在家带娃,体会到了妻子的不容易,需要好好努力来多赚钱了,言归正传.10月份开始进去JAVA 高级语法知识学习,本节复习学习的为:静态导入.可变参数.增强型for循环.装拆 ...
- python _winreg模块
详细资料请参考:https://docs.python.org/2/library/_winreg.html 一.常用函数功能介绍 OpenKey() - 打开一个key ############## ...
- Python日期时间Date/Time
Python程序可以处理多种方式的日期和时间.日期格式之间的转换是一种常见计算机的杂活. Python的时间和日历模块,能帮助处理日期和时间. Tick是什么? 为时间间隔,以秒为单位的浮点数.从“新 ...
- javascript Dom 编程
javascript Dom 编程 知识概要: (1)Dom是什么? (2)Dom结构模型 (3)XML DOM和 HTML DOM (4)NODE接口的特性和方法 (5)DOM结点的常用属性 ...
- Struts2 02--通配符
在以前没有使用Struts时,web与前台的数据交互通过Servlet+jsp页面.一个增删改查往往需要写四个Servlet来处理数据:在使用struts之后,Servlet不再被使用,而是通过 ...
- DevOps之服务故障
唠叨话 关于德语噢屁事的知识点,仅提供精华汇总,具体知识点细节,参考教程网址,如需帮助,请留言. <DevOps服务故障> 0.故障1.设施故障2.设备故障3.系统故障4.虚拟化故障5.存 ...