B. The Meeting Place Cannot Be Changed
time limit per test

5 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

The main road in Bytecity is a straight line from south to north. Conveniently, there are coordinates measured in meters from the southernmost building in north direction.

At some points on the road there are n friends, and i-th of them is standing at the point xi meters and can move with any speed no greater than vi meters per second in any of the two directions along the road: south or north.

You are to compute the minimum time needed to gather all the n friends at some point on the road. Note that the point they meet at doesn't need to have integer coordinate.

Input

The first line contains single integer n (2 ≤ n ≤ 60 000) — the number of friends.

The second line contains n integers x1, x2, ..., xn (1 ≤ xi ≤ 109) — the current coordinates of the friends, in meters.

The third line contains n integers v1, v2, ..., vn (1 ≤ vi ≤ 109) — the maximum speeds of the friends, in meters per second.

Output

Print the minimum time (in seconds) needed for all the n friends to meet at some point on the road.

Your answer will be considered correct, if its absolute or relative error isn't greater than 10 - 6. Formally, let your answer be a, while jury's answer be b. Your answer will be considered correct if  holds.

Examples
input
3
7 1 3
1 2 1
output
2.000000000000
input
4
5 10 3 2
2 3 2 4
output
1.400000000000
Note

In the first sample, all friends can gather at the point 5 within 2 seconds. In order to achieve this, the first friend should go south all the time at his maximum speed, while the second and the third friends should go north at their maximum speeds.

/*
题意:有n个朋友在一条南北方向的坐标轴上,n个朋友每人都有自己的最大速度,现在让你求出让n个朋友在
某点汇合的最小时间 初步思路:二分,二分判断的条件就是这些点,在时间t内向南走的最大距离,和向北走的最小距离能不能相
遇,如果能相遇的话,那么这个时间就可以
*/ #include<bits/stdc++.h>
using namespace std;
long long n,i,x[],v[];
long double l,r,t,eps,mx,mn;
int main()
{
// freopen("in.txt","r",stdin);
cin>>n;
for (i=;i<=n;i++) cin>>x[i];
for (i=;i<=n;i++) cin>>v[i];
r=1e9; eps=1e-;
while(r-l>eps)
{
t=(r+l)/2.0;
mx=x[]-t*v[];
mn=x[]+t*v[];
for(i=;i<=n;i++)
{
if (mx<x[i]-t*v[i])//向南走能到达的最大的范围
mx=x[i]-t*v[i];
if (mn>x[i]+t*v[i])//向北走能到达的最小的范围
mn=x[i]+t*v[i];
}
// cout<<mx<<" "<<mn<<endl;
if (mx<=mn) //如果向南走的距离小于等于向北走的距离,就缩小二分的边界
r=t;
else //否则就扩大二分的边界
l=t;
}
cout<<fixed<<l;
}
 

code force 403B.B. The Meeting Place Cannot Be Changed的更多相关文章

  1. codeforces 782B The Meeting Place Cannot Be Changed (三分)

    The Meeting Place Cannot Be Changed Problem Description The main road in Bytecity is a straight line ...

  2. Cf Round #403 B. The Meeting Place Cannot Be Changed(二分答案)

    The Meeting Place Cannot Be Changed 我发现我最近越来越zz了,md 连调程序都不会了,首先要有想法,之后输出如果和期望的不一样就从输入开始一步一步地调啊,tmd现在 ...

  3. Codeforces Round #403 (Div. 2, based on Technocup 2017 Finals) B. The Meeting Place Cannot Be Changed

    地址:http://codeforces.com/contest/782/problem/B 题目: B. The Meeting Place Cannot Be Changed time limit ...

  4. AC日记——The Meeting Place Cannot Be Changed codeforces 780b

    780B - The Meeting Place Cannot Be Changed 思路: 二分答案: 代码: #include <cstdio> #include <cstrin ...

  5. Codeforces 782B The Meeting Place Cannot Be Changed(二分答案)

    题目链接 The Meeting Place Cannot Be Changed 二分答案即可. check的时候先算出每个点可到达的范围的区间,然后求并集.判断一下是否满足l <= r就好了. ...

  6. codeforces 782B The Meeting Place Cannot Be Changed+hdu 4355+hdu 2438 (三分)

                                                                   B. The Meeting Place Cannot Be Change ...

  7. CodeForce-782B The Meeting Place Cannot Be Changed(高精度二分)

    https://vjudge.net/problem/CodeForces-782B B. The Meeting Place Cannot Be Changed time limit per tes ...

  8. B. The Meeting Place Cannot Be Changed

    B. The Meeting Place Cannot Be Changed time limit per test 5 seconds memory limit per test 256 megab ...

  9. pycharm debug后会出现 step over /step into/step into my code /force step into /step out 分别表示

    1.debug,全部打印 2.打断点debug,出现单步调试等按钮,只运行断点前 3.setup over 调试一行代码 4.setup out 运行断点后面所有代码 5.debug窗口显示调试按钮 ...

随机推荐

  1. 【DDD】领域驱动设计实践 —— Application层实现

    本文是DDD框架实现讲解的第二篇,主要介绍了DDD的Application层的实现,详细讲解了service.assemble的职责和实现.文末附有github地址.相比于<领域驱动设计> ...

  2. C#ZIP根据路径读取压缩包内文件数量

    /// <summary> /// 根据压缩包路径读取此压缩包内文件个数 /// </summary> /// <param name="strAimPath& ...

  3. Web 开发模式演变历史和趋势

    前不久徐飞写了一篇很好的文章:Web 应用的组件化开发.本文尝试从历史发展角度,说说各种研发模式的优劣. 一.简单明快的早期时代 可称之为 Web 1.0 时代,非常适合创业型小项目,不分前后端,经常 ...

  4. 01.python基础知识_01

    一.编译型语言和解释型语言的区别是什么? 1.编译型语言将源程序全部编译成机器码,并把结果保存为二进制文件.运行时,直接使用编译好的文件即可 2.解释型语言只在执行程序时,才一条一条的解释成机器语言给 ...

  5. Android Studio 导入应用时报错 Error:java.lang.RuntimeException: Some file crunching failed, see logs for details

    在app文件夹的build.gradle里加上 android { ...... aaptOptions.cruncherEnabled = false aaptOptions.useNewCrunc ...

  6. IO模型分析

    html { font-family: sans-serif } body { margin: 0 } article,aside,details,figcaption,figure,footer,h ...

  7. java web jsp原理图 ,静态包含,动态包含,out与response.getWrite()

    jsp原理图 ,静态包含,动态包含,out与response.getWrite() 

  8. 虚拟机+桥接模式+Host-only模式 搭建完美的Windows下Linux开发环境

    相信有很多鞋童和我一个样是一枚Linux码农(我现在还是嵌入式方向). 做Linux开发势必需要一个Linux环境, 大多数开发者会首先选择一个Linux发行版, 其中Ubuntu LTS版本应该是选 ...

  9. [js高手之路]封装运动框架实战左右与上下滑动的焦点轮播图

    在这篇文章[js高手之路]打造通用的匀速运动框架中,封装了一个匀速运动框架,我们在这个框架的基础之上,加上缓冲运动效果,然后用运动框架来做幻灯片(上下,左右),效果如下: 1 2 3 4 5 // 0 ...

  10. PHP windowns安装扩展包

    1.  php_msgpack.dll php.ini 添加  extension=php_msgpack.dll 下载dll: http://pecl.php.net/package/msgpack ...