本节来学习裸机下的LCD 驱动,本节学完后,再来学习Linux下如何使用LCD驱动

Linux中的LCD驱动,链接如下:

(Linux-LCD层次分析链接:http://www.cnblogs.com/lifexy/p/7603327.html)

(Linux-LCD驱动分析链接:http://www.cnblogs.com/lifexy/p/7604011.html)


横屏4.3寸LCD为480*272(行:480个像素点        列:272个行)

1.LCD原理图 :

Pin1- Pin6:Von/ Voff  电源正/负(由GPG4控制,高电平有效)

Pin2:VM/VDEN 数据使能信号 (0:表示正在跳行,1:表示可以传输像素数据)

Pin8:VLINE/HSYNC 水平同步信号(每扫完一行,即发一次水平同步信号)

Pin28:VFRAME/VSNC 垂直同步信号(每扫完一屏,即发一次垂直同步信号)

Pin30:VLCK 时钟信号

Pin42,Pin45 LED+,LED-   背光显示开关 (由0:off   1:no)

VD23~VD19:R信号   

VD15~VD10:G信号 

VD7~VD3    :B信号 

数据是采用16Bpp像素,RGB565格式(因为LCD控制器不支持18Bpp格式)

例如:粉色RGB值分别为209,92,174(11010001,01011100,10101110)

数据从高位往下取,R和B取5位,G取6位,那么值为0XD2F5。

565RGB引脚连接图如下:

1.2配置引脚

     GPCUP   = 0xffffffff;   // 禁止内部上拉
GPCCON = 0xaaaaaaaa; // GPIO管脚用于VD[7:0],LCDVF[2:0],VM,VFRAME,VLINE,VCLK,LEND
GPDUP = 0xffffffff; // 禁止内部上拉
GPDCON = 0xaaaaaaaa; // GPIO管脚用于VD[23:8]
GPBCON &= ~(GPB0_MSK); // Power enable pin
GPBCON |= GPB0_out;
GPBDAT &= ~(<<); // Power off

2.设置LCDCON1~5控制寄存器

2.1BSWP和HWSWP介绍

更改存储格式,对于16bppRGB565(高数据在后)来说,BSWP=0, HWSWP=1

2.2查看2440中LCD控制器初始状态时序图:

VSPW: 垂直同步脉冲宽度 pulse widch 

VBPD: 垂直脉冲后沿延迟(用来等待LCD模块响应的时间)  back delay 

VFPD: 垂直脉冲前沿延迟(用来等待LCD模块响应的时间)  Front delay

HSPW: 行同步脉冲宽度 pulse widch 

HBPD: 行脉冲后沿延迟(用来等待LCD模块响应的时间)  back delay 

HFPD: 行脉冲前沿延迟(用来等待LCD模块响应的时间)  Front delay

 LINEVAL:行数,用来决定垂直尺寸,对于4.3寸时,LINEVAL=272-1

HOZVAL:行数,用来决定水平像素点个数,对于4.3寸时,HOZVAL=480-1

2.3 查看 LCD芯片手册时序图,计算周期时间:

从上图2中得到时钟周期为10Mhz(100ns)

通过图1和图3计算出:

HSPW+1=T7=5 clock

HFPD+1=T8-T11=11 clock

HBPD+1=T6-T7-T8=17 clock

VSPW+1=T1=1 Line

VFPD+1=T2-T5=2 Line

VBPD+1=T0-T2-T1=4 Line

2.4 配置LCDCON1~5

根据上面就先来定义全局变量:

 #define  HSPW_16bpp      5-1
#define HFPD _16bpp 11-1
#define HBPD _16bpp 17-1
#define VSPW _16bpp 1-1
#define VFPD _16bpp 2-1
#define VBPD _16bpp 4-1

设置LCDCON1寄存器:

CLKVAL[17:8]:

设置VCLK时钟, CLKVAL =HCLK/(LCD时钟*2)-1

本裸板的HCLK=100Mhz,LCD时钟=10MHZ,所以CLKVAL =4

PNRMODE [6:5]:

设置为TFT模式,PNRMODE =0x3

BPPMODE[4:1]:

设置为16BPP, BPPMODE=0x0C

ENVID [0]:

控制PWREN信号(GPG4)输出,先配置好再输出PWREN, ENVID =0

(开启之前应该设置LCDCON5位[3]允许PWREN信号才有效)

设置LCDCON2寄存器:

VBPD [31:24]:垂直脉冲后沿延时, VBPD=VBPD_16bpp;

LINEVAL[23:14]:垂直行数,决定垂直大小, LINEVAL=272-1;

VFPD[13:6]:垂直脉冲前沿延时, VFPD= VFPD_16bpp;

VSPW[5:0]:垂直同步脉冲宽度, VSPW= VSPW_16bpp;

设置LCDCON3寄存器:

HBPD[25:19]:水平脉冲后沿延时, HBPD= HBPD_16bpp;

HOZVAL[18:8]:水平像素点个数, HBPD= 479;

HFPD[7:0]:水平脉冲前沿延时, HFPD= HFPD_16bpp;

设置LCDCON4寄存器:

HSPW[7:0]:水平同步脉冲宽度, HSPW = HSPW_16bpp;

设置LCDCON5寄存器:

FRM565[11]:设置16bpp输出格式, FRM565=1(RGB565);

INVVCLK[10]:设置VCLK记性,LCD手册如下,所以等于0,不设置(下降沿读取数据)

INVVLINE [9]:HSYNC水平同步信号反转, 因为LCD手册和2440手册不一样,所以INVVLINE=1;

INVVFRAME[8]:VSYNC垂直同步信号反转, 因为LCD手册和2440手册不一样,所以INVVFRAME =1;

INVVFRAME[3]:PWREN信号(GPG4)允许位,=0,不设置,等设置了缓存寄存器后才设置

HWSWP [0]:更改存储格式,这里HWSWP=1,BSWP[1]默认等于0,使我们的LCD像素显示从低到高排列

代码如下:


 LCDCON1 = (4<<8) | (0X3<<5) |  (0x0C <<1) | (0<<0);

 LCDCON2 = ((VBPD_16bpp)<<24) | (271<<14) |  ((VFPD_16bpp)<<6) |((VSPW_16bpp)<<0);

 LCDCON3 = ((HBPD_16bpp)<<19) | (479<<8) | ((HFPD_16bpp));

 LCDCON4 = (HSPW_16bpp);

 LCDCON5 = (1<<11) | (1<<9) | (1<<8) |  (1<<0);

 LCDCON1 &=~(1<<0);          // 关闭PWREN信号输出

 LCDCON5 &=~(1<<3);          //禁止PWREN信号

3.设置LCDSADDR1~3缓冲地址寄存器

设置LCDSADDR1寄存器:

LCDBANK[29:21]:

保存缓冲起始地址A[30:22]

LCDBASEU[20:0]:

保存缓冲起始地址A[21:1]

设置LCDSADDR2寄存器:

LCDBASEL[20:0]:

保存存缓冲结束地址A[21:1],这里我们 采用4.3寸LCD,所以等于((0x30400000+(480)*(272)*2)>>1)&0x1fffff; 这里*2是代表一个像素占了2字节,若是8bpp模式,则就不需要乘以2  

设置LCDSADDR3寄存器:

OFFSIZE[21:11]:

保存LCD上一行结尾和下一行开头的地址之间的差(半字数为单位),我们使用的是连续地址,所以不设置,默认为0

PAGEWIDTH [10:0]:

保存LCD一行占的宽度(半字数为单位),我们每个像素点是半字数,所以等于480

代码如下:         

 LCDSADDR1 = ((0x30400000>>)<<) |  ((0x30400000>>)& 0x1fffff);
LCDSADDR2 = ((0x30400000+()*()*)>>)& 0x1fffff;
LCDSADDR3 = (<<) | (*/);

4.允许并输出PWREN信号

GPGCON = (GPGCON & (~(<<))) | (<<);   // GPG4用作LCD_PWREN
GPGUP = (GPGUP & (~(<<))) | (<<); // 禁止内部上拉 LCDCON5 = (LCDCON5 & (~(<<))) | (<<); // 设置LCD_PWREN的极性: 正常
LCDCON5 = (LCDCON5 & (~(<<))) | (<<); // 允许LCD_PWREN信号输出 LCDCON1 |= ; //输出LCD_PWREN信号

 5.驱动LCD显示白色

 fb_base_addr=0x30400000;    //缓存起始地址
LCDCON1 |= 1; // 使能LCD驱动
GPBDAT |= (1<<0); // 开背光
color=0xffffff; //显示白色颜色
for (y = 0; y < 272; y++) //向缓存地址里存数据
for (x = 0; x < 480; x++)
{
UINT16 *addr = (UINT16 *)fb_base_addr + (y * 480 + x); //定义指针变量等于缓存地址
red = (color >> 19) & 0x1f;
green = (color >> 10) & 0x3f;
blue = (color >> 3) & 0x1f;
color = (red << 11) | (green << 5) | blue; // 格式5:6:5
*addr = (UINT16) color; //addr表示缓存地址,*addr表示缓存地址里的变量,
}
LCDCON1 &= 0x3fffe; // 失能LCD驱动
GPBDAT &= ~(1<<0); // 关背光

  

6.TPAL临时调色板寄存器介绍

当清屏时,可以使用TPAL寄存器,快速清屏

    位[24]     TPAL使能位

    位[23:0]  RGB数据位

例如: TPAL=0x1ffffff (使能TPAL寄存器,并设为白色屏)

裸机LCD驱动配置的更多相关文章

  1. Smart210学习-----lcd驱动

    帧缓冲设备 1.1帧缓冲设备:帧缓冲(framebuffer)是 Linux 系统为显示设备提供的一个接口,它将显示缓冲区抽象,屏蔽图像硬件的底层差异,允许上层应用程序在图形模式下直接对显示缓冲区进行 ...

  2. lcd驱动框架

    目录 lcd驱动框架 框图 程序分析 入口 打开open 读read 初始化registered_fb 注册 小结 程序设计 测试 方式一操作fb0 方式二操作tty 方式三操作终端 完整程序 tit ...

  3. Linux驱动之LCD驱动编写

    在Linux驱动之内核自带的S3C2440的LCD驱动分析这篇博客中已经分析了编写LCD驱动的步骤,接下来就按照这个步骤来字尝试字节编写LCD驱动.用的LCD屏幕为tft屏,每个像素点为16bit.对 ...

  4. 嵌入式Linux驱动学习之路(十八)LCD驱动

    驱动代码: /************************************************************************* > File Name: lcd ...

  5. S3C2440 LCD驱动(FrameBuffer)实例开发<一>(转)

    1. 背景知识 在多媒体的推动下,彩色LCD越来越多地应用到嵌入式系统中,PDA和手机等大多都采用LCD作为显示器材,因此学习LCD的应用很有实际意义! LCD工作的硬件需求:要使一块LCD正常的显示 ...

  6. 单片机模拟 1/2 Bias、1/4 Duty的 LCD 驱动使用方法

    工作原理 方式一     根据 LCD 的驱动原理可知,LCD 像素点上只能加上 AC 电压,LCD 显示器的对比度由 COM脚上的电压值减去 SEG 脚上的电压值决定,当这个电压差大于 LCD 的饱 ...

  7. sc7731 Android 5.1 LCD驱动简明笔记之一

    基于展讯sc7731 - Android 5.1 代码分析浏览.将屏蔽细节,把握整体,并且不涉及其他设备和LCD的交互. 以下对sc7731 lcd大体流程进行简要说明. 第一,lcd 的两个阶段 1 ...

  8. android系统平台显示驱动开发简要:LCD驱动调试篇『四』

    平台信息: 内核:linux3.4.39系统:android4.4 平台:S5P4418(cortex a9) 作者:瘋耔(欢迎转载,请注明作者) 欢迎指正错误,共同学习.共同进步!! 关注博主新浪博 ...

  9. LCD驱动(FrameBuffer)实例开发讲解

    一.开发环境 主  机:VMWare--Fedora 9 开发板:Mini2440--64MB Nand, Kernel:2.6.30.4 编译器:arm-linux-gcc-4.3.2 二.背景知识 ...

随机推荐

  1. 利用Apache commons-net 包进行FTP文件和文件夹的上传与下载

    首先声明:这段代码是我在网上胡乱找的,调试后可用. 需要提前导入jar包,我导入的是:commons-net-3.0.1,在网上可以下载到.以下为源码,其中文件夹的下载存在问题:FTPFile[] a ...

  2. mybatis 详解(五)------动态SQL

    前面几篇博客我们通过实例讲解了用mybatis对一张表进行的CRUD操作,但是我们发现写的 SQL 语句都比较简单,如果有比较复杂的业务,我们需要写复杂的 SQL 语句,往往需要拼接,而拼接 SQL ...

  3. NYOJ--139--我排第几个(康托展开)

    我排第几个 时间限制:1000 ms  |  内存限制:65535 KB 难度:3   描述 现在有"abcdefghijkl"12个字符,将其所有的排列中按字典序排列,给出任意一 ...

  4. 计算机四级网络工程师--《操作系统(Operating System)》重点内容学习

    开篇语 今天开始看<操作系统>,没办法,计算机网络技术还算有点底子.至于操作系统要不是以前看过一些这方面的书籍,以及上学期学了单片机工作原理,我估计我真的是懵逼的!所幸,在网上找的233网 ...

  5. 浅谈Python在信息学竞赛中的运用及Python的基本用法

    浅谈Python在信息学竞赛中的运用及Python的基本用法 前言 众所周知,Python是一种非常实用的语言.但是由于其运算时的低效和解释型编译,在信息学竞赛中并不用于完成算法程序.但正如LRJ在& ...

  6. SVN:Cleanup failed to process the following paths

    频繁使用SVN,于是乎玩坏了.用了一下clearup,结果爆了如题错误.查了一下,是有文件被加锁了,位置在项目根目录 .svn下的wc.db 里,需用专门工具才能看到里面.就是个数据库,里面有很多表. ...

  7. shell 变量的使用

    变量定义 name="xiaoming"; age=12: 变量名和等号之间不能有空格,否则会报错,同时变量名的命名和其他语言的命名规则基本一样 首个字符必须为字母(a-z,A-Z ...

  8. 关于mysql中的数据查询—嵌套查询

    嵌套查询 一个SELECT  FROM  WHERE语句称为一个查询块. 嵌套查询:将一个查询块嵌套在另一个查询块的WHERE子句或者HAVING短语的条件中的查询. 注:子查询的SELECT语句中不 ...

  9. 关于JS递归函数细化认识及实用实例

    程序调用自身的编程技巧称为递归( recursion). 一个过程或函数在其定义或说明中又直接或间接调用自身的一种方法,它通常把一个大型复杂的问题层层转化为一个与原问题相似的规模较小的问题来求解,递归 ...

  10. 【leetcode】147. Insertion Sort List

    Sort a linked list using insertion sort. 链表的插入排序. 需要创建一个虚拟节点.注意点就是不要节点之间断了. class Solution { public: ...