框架简介

  • Martin Fowler在自己网站上写了一篇LMAX架构的文章,在文章中他介绍了LMAX是一种新型零售金融交易平台,它能够以很低的延迟产生大量交易。这个系统是建立在JVM平台上,其核心是一个业务逻辑处理器,它能够在一个线程里每秒处理6百万订单。业务逻辑处理器完全是运行在内存中,使`用事件源驱动方式。业务逻辑处理器的核心是Disruptor。
  • Disruptor它是一个开源的并发框架,并获得2011 Duke’s 程序框架创新奖,能够在无锁的情况下实现网络的Queue并发操作。
  • Disruptor是一个高性能的异步处理框架,或者可以认为是最快的消息框架(轻量的JMS),也可以认为是一个观察者模式的实现,或者事件监听模式的实现。

在使用之前,首先说明disruptor主要功能加以说明,你可以理解为他是一种高效的"生产者-消费者"模型。也就性能远远高于传统的BlockingQueue容器。

上手demo

  • 首先声明一个Event来包含需要传递的数据:
public class LongEvent {
private long value;
public long getValue() {
return value;
} public void setValue(long value) {
this.value = value;
}
}
  • 于需要让Disruptor为我们创建事件,我们同时还声明了一个EventFactory来实例化Event对象。
// 需要让disruptor为我们创建事件,我们同时还声明了一个EventFactory来实例化Event对象。
public class LongEventFactory implements EventFactory { @Override
public Object newInstance() {
return new LongEvent();
}
}
  • 我们还需要一个事件消费者,也就是一个事件处理器。这个事件处理器简单地把事件中存储的数据打印到终端:
public class LongEventHandler implements EventHandler<LongEvent>  {

	@Override
public void onEvent(LongEvent longEvent, long l, boolean b) throws Exception {
System.out.println(longEvent.getValue());
} }
  • 事件都会有一个生成事件的源,这个例子中假设事件是由于磁盘IO或者network读取数据的时候触发的,事件源使用一个ByteBuffer来模拟它接受到的数据,也就是说,事件源会在IO读取到一部分数据的时候触发事件(触发事件不是自动的,程序员需要在读取到数据的时候自己触发事件并发布)

public class LongEventProducer { private final RingBuffer<LongEvent> ringBuffer; public LongEventProducer(RingBuffer<LongEvent> ringBuffer){
this.ringBuffer = ringBuffer;
} /**
* onData用来发布事件,每调用一次就发布一次事件
* 它的参数会用过事件传递给消费者
*/
public void onData(ByteBuffer bb){
//1.可以把ringBuffer看做一个事件队列,那么next就是得到下面一个事件槽
long sequence = ringBuffer.next();
try {
//2.用上面的索引取出一个空的事件用于填充(获取该序号对应的事件对象)
LongEvent event = ringBuffer.get(sequence);
//3.获取要通过事件传递的业务数据
event.setValue(bb.getLong(0));
} finally {
//4.发布事件
//注意,最后的 ringBuffer.publish 方法必须包含在 finally 中以确保必须得到调用;
// 如果某个请求的 sequence 未被提交,将会堵塞后续的发布操作或者其它的 producer。
ringBuffer.publish(sequence);
}
} }
  • main函数执行调用
public class LongEventMain {

	public static void main(String[] args) throws Exception {
//创建缓冲池
ExecutorService executor = Executors.newCachedThreadPool();
//创建工厂
LongEventFactory factory = new LongEventFactory();
//创建bufferSize ,也就是RingBuffer大小,必须是2的N次方
int ringBufferSize = 1024 * 1024; // /**
//BlockingWaitStrategy 是最低效的策略,但其对CPU的消耗最小并且在各种不同部署环境中能提供更加一致的性能表现
WaitStrategy BLOCKING_WAIT = new BlockingWaitStrategy();
//SleepingWaitStrategy 的性能表现跟BlockingWaitStrategy差不多,对CPU的消耗也类似,但其对生产者线程的影响最小,适合用于异步日志类似的场景
WaitStrategy SLEEPING_WAIT = new SleepingWaitStrategy();
//YieldingWaitStrategy 的性能是最好的,适合用于低延迟的系统。在要求极高性能且事件处理线数小于CPU逻辑核心数的场景中,推荐使用此策略;例如,CPU开启超线程的特性
WaitStrategy YIELDING_WAIT = new YieldingWaitStrategy();
*/ /**
* 参数说明:
*/ //创建disruptor
Disruptor<LongEvent> disruptor =
new Disruptor<LongEvent>(factory, ringBufferSize, executor, ProducerType.SINGLE, new YieldingWaitStrategy());
// 连接消费事件方法
disruptor.handleEventsWith(new LongEventHandler()); // 启动
disruptor.start(); //Disruptor 的事件发布过程是一个两阶段提交的过程:
//发布事件
RingBuffer<LongEvent> ringBuffer = disruptor.getRingBuffer(); LongEventProducer producer = new LongEventProducer(ringBuffer);
//LongEventProducerWithTranslator producer = new LongEventProducerWithTranslator(ringBuffer);
ByteBuffer byteBuffer = ByteBuffer.allocate(8);
for(long l = 0; l<100; l++){
byteBuffer.putLong(0, l);
producer.onData(byteBuffer);
//Thread.sleep(1000);
} disruptor.shutdown();//关闭 disruptor,方法会堵塞,直至所有的事件都得到处理;
executor.shutdown();//关闭 disruptor 使用的线程池;如果需要的话,必须手动关闭, disruptor 在 shutdown 时不会自动关闭; }
}

参考资料:http://ifeve.com/disruptor-getting-started/

Disruptor并发框架(一)简介&上手demo的更多相关文章

  1. Disruptor并发框架简介

    Martin Fowler在自己网站上写一篇LMAX架构的文章,在文章中他介绍了LMAX是一种新型零售金额交易平台,它能够以很低的延迟产生大量交易.这个系统是建立在JVM平台上,其核心是一个业务逻辑处 ...

  2. 并发编程之Disruptor并发框架

    一.什么是Disruptor Martin Fowler在自己网站上写了一篇LMAX架构的文章,在文章中他介绍了LMAX是一种新型零售金融交易平台,它能够以很低的延迟产生大量交易.这个系统是建立在JV ...

  3. Disruptor 并发框架

    什么是Disruptor Martin Fowler在自己网站上写了一篇LMAX架构的文章,在文章中他介绍了LMAX是一种新型零售金融交易平台,它能够以很低的延迟产生大量交易.这个系统是建立在JVM平 ...

  4. 架构师养成记--15.Disruptor并发框架

    一.概述 disruptor对于处理并发任务很擅长,曾有人测过,一个线程里1s内可以处理六百万个订单,性能相当感人. 这个框架的结构大概是:数据生产端 --> 缓存 --> 消费端 缓存中 ...

  5. 基于Disruptor并发框架的分类任务并发

    并发的场景 最近在编码中遇到的场景,我的程序需要处理不同类型的任务,场景要求如下: 1.同类任务串行.不同类任务并发. 2.高吞吐量. 3.任务类型动态增减. 思路 思路一: 最直接的想法,每有一个任 ...

  6. Disruptor并发框架 (二)核心概念场景分析

    核心术语 RingBuffer(容器): 被看作Disruptor最主要的组件,然而从3.0开始RingBuffer仅仅负责存储和更新在Disruptor中流通的数据.对一些特殊的使用场景能够被用户( ...

  7. 架构师养成记--16.disruptor并发框架中RingBuffer的使用

    很多时候我们只需要消息中间件这样的功能,那么直需要RinBuffer就可以了. 入口: import java.util.concurrent.Callable; import java.util.c ...

  8. 无锁并发框架Disruptor学习入门

    刚刚听说disruptor,大概理一下,只为方便自己理解,文末是一些自己认为比较好的博文,如果有需要的同学可以参考. 本文目标:快速了解Disruptor是什么,主要概念,怎么用 1.Disrupto ...

  9. 并发框架Disruptor译文

    Martin Fowler在自己网站上写了一篇LMAX架构的文章,在文章中他介绍了LMAX是一种新型零售金融交易平台,它能够以很低的延迟产生大量交易.这个系统是建立在JVM平台上,其核心是一个业务逻辑 ...

随机推荐

  1. zanphp 初探----安装篇

    安装 zanphp 的安装详细步骤具体在 http://zanphpdoc.zanphp.io/,但是安装的时候,还是踩了一些坑,Mac 和 Ubuntu 我都安装过, 分享大家注意一下. PHP 版 ...

  2. 数据结构与算法(C/C++版)【串】

    第四章<串.数组> (一)串   数据结构中提到的串,即字符串,由 n 个字符组成的一个整体( n >= 0 ).这 n 个字符可以由字母.数字或者其他字符组成.例如,S = &qu ...

  3. JavaScript tips ——搞定闰年

    前言 处理时间时,常常要考虑用户的输入是否合法,其中一个很典型的场景就是平闰年的判断,网上其实有很多类似的算法,但是其实不必那么麻烦,下面我讲讲的我的思路. 规则 公元年数可被4整除为闰年,但是整百( ...

  4. Ansible - 简介和应用自动化基础实践

    installAnsible简介和应用自动化基础实践 一.引入: 1.1  如官方定义,Ansible is The simplest way to automate apps and IT infr ...

  5. MySQL基数(索引基数)

    基数是数据列所包含的不同值的数量.例如,某个数据列包含值1.3.7.4.7.3,那么它的基数就是4. 索引的基数相对于数据表行数较高(也就是说,列中包含很多不同的值,重复的值很少)的时候,它的工作效果 ...

  6. 一张图让你明确Android Touch事件的传递机制

  7. hdu 4109 dfs+剪枝优化

    求最久时间即在无环有向图里求最远路径 dfs+剪枝优化 从0节点(自己添加的)出发,0到1~n个节点之间的距离为1.mt[i]表示从0点到第i个节点眼下所得的最长路径 #include<iost ...

  8. Android之不须要自己定义View(ViewfindView.java)最简单的二维码扫描

    不废话,先爆照 watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/d ...

  9. TempData知多少

    网上对TempData的总结为: 保存在session中,Controller每次执行请求时,会从session中一次获取所有tempdata数据,保存在单独的内部数据字典中,而后从session中清 ...

  10. 什么是 stack?- 每天5分钟玩转 Docker 容器技术(111)

    什么是 stack ?在回答这个问题之前我们先回忆一下前面部署 WordPress 应用的过程: 首先创建 secret. 然后创建 MySQL service,这是 WordPress 依赖的服务. ...