python并开发编程之协程
一 引出协成
并发的本质是:切换+保存状态
CPU在运行行一个任务时,会在两种情况下切走去执行其他任务,一是该任务发生了阻塞,二是运行该任务的时间过长
yeild可以保存状态,yeild状态保存与操作系统很像
send可以把一个函数的结果传给另外一个函数,从而实现单线程内程序之间的切换
#串行执行
import time
def consumer(res):
'''任务1:接收数据,处理数据'''
pass def producer():
'''任务2:生产数据'''
res=[]
for i in range(10000000):
res.append(i)
return res start=time.time()
#串行执行
res=producer()
consumer(res)
stop=time.time()
print(stop-start) #1.5536692142486572 #基于yield并发执行
import time
def consumer():
'''任务1:接收数据,处理数据'''
while True:
x=yield def producer():
'''任务2:生产数据'''
g=consumer()
next(g)
for i in range(10000000):
g.send(i) start=time.time()
#基于yield保存状态,实现两个任务直接来回切换,即并发的效果
#PS:如果每个任务中都加上打印,那么明显地看到两个任务的打印是你一次我一次,即并发执行的.
producer() stop=time.time()
print(stop-start) #2.0272178649902344
单纯地切换反而会降低运行效率
import time
def consumer():
'''任务1:接收数据,处理数据'''
while True:
x=yield def producer():
'''任务2:生产数据'''
g=consumer()
next(g)
for i in range(10000000):
g.send(i)
time.sleep(2) start=time.time()
producer() #并发执行,但是任务producer遇到io就会阻塞住,并不会切到该线程内的其他任务去执行 stop=time.time()
print(stop-start)
yield并不能实现遇到io切换
总结:
1. 可以控制多个任务之间的切换,切换之前将任务的状态保存下来(重新运行时,可以基于暂停的位置继续)
2. 作为1的补充:可以检测io操作,在遇到io操作的情况下才发生切换
二 协程介绍
协成:单线程下的并发,简称微线程,协成是一种用户态轻量级的线程,即协成是由用户程序自己控制的
1. python的线程属于内核级别的,即由操作系统控制调度(如单线程遇到io或执行时间过长就会被迫交出cpu执行权限,切换其他线程运行)
2. 单程内开启协程,一旦遇到io,就会从应用程序级别(而非操作系统)控制切换,以此来提升效率(!!!非io操作的切换与效率无关)
对比操作系统控制线程的切换,用户在单线程内控制协程的切换
优点如下:
1. 协程的切换开销更小,属于程序级别的切换,操作系统完全感知不到,因而更加轻量级
2. 单线程内就可以实现并发的效果,最大限度地利用cpu
缺点如下:
1. 协程的本质是单线程下,无法利用多核,可以是一个程序开启多个进程,每个进程内开启多个线程,每个线程内开启协程
2. 协程指的是单个线程,因而一旦协程出现阻塞,将会阻塞整个线程
总结协程特点:
- 必须在只有一个单线程里实现并发
- 修改共享数据不需加锁
- 用户程序里自己保存多个控制流的上下文栈
- 附加:一个协程遇到IO操作自动切换到其它协程(如何实现检测IO,yield、greenlet都无法实现,就用到了gevent模块(select机制))
三 Greenlet
安装 pip3 install greenlet
from greenlet import greenlet def eat(name):
print('%s eat 1' %name)
g2.switch('egon')
print('%s eat 2' %name)
g2.switch()
def play(name):
print('%s play 1' %name)
g1.switch()
print('%s play 2' %name) g1=greenlet(eat)
g2=greenlet(play) g1.switch('egon')#可以在第一次switch时传入参数,以后都不需要
单纯的切换(在没有io的情况下或者没有重复开辟内存空间的操作),反而会降低程序的执行速度
#顺序执行
import time
def f1():
res=1
for i in range(100000000):
res+=i def f2():
res=1
for i in range(100000000):
res*=i start=time.time()
f1()
f2()
stop=time.time()
print('run time is %s' %(stop-start)) #10.985628366470337 #切换
from greenlet import greenlet
import time
def f1():
res=1
for i in range(100000000):
res+=i
g2.switch() def f2():
res=1
for i in range(100000000):
res*=i
g1.switch() start=time.time()
g1=greenlet(f1)
g2=greenlet(f2)
g1.switch()
stop=time.time()
print('run time is %s' %(stop-start)) # 52.763017892837524
四 Gevent介绍
安装pip3 install gevent
Gevent 是一个第三方库,可以轻松通过gevent实现并发同步或异步编程,在gevent中用到的主要模式是Greenlet, 它是以C扩展模块形式接入Python的轻量级协程。 Greenlet全部运行在主程序操作系统进程的内部,但它们被协作式地调度。
#用法
g1=gevent.spawn(func,1,,2,3,x=4,y=5)创建一个协程对象g1,spawn括号内第一个参数是函数名,如eat,后面可以有多个参数,可以是位置实参或关键字实参,都是传给函数eat的 g2=gevent.spawn(func2) g1.join() #等待g1结束 g2.join() #等待g2结束 #或者上述两步合作一步:gevent.joinall([g1,g2]) g1.value#拿到func1的返回值
遇到IO阻塞时会自动切换任务
import gevent
def eat(name):
print('%s eat 1' %name)
gevent.sleep(2)
print('%s eat 2' %name) def play(name):
print('%s play 1' %name)
gevent.sleep(1)
print('%s play 2' %name) g1=gevent.spawn(eat,'egon')
g2=gevent.spawn(play,name='egon')
g1.join()
g2.join()
#或者gevent.joinall([g1,g2])
print('主')
从而引出要用gevent,需要将from gevent import monkey;monkey.patch_all()放到文件的开头
from gevent import monkey;monkey.patch_all()
import gevent,time
def eat():
print('eat h111ing')
time.sleep(2)
print('eat h222ing') def play():
print('play 1')
time.sleep(1)
print('play 2')
g1=gevent.spawn(eat)
g2=gevent.spawn(play)
gevent.joinall([g1,g2])
print('主')
五 Gevent之同步与异步
from gevent import spawn,joinall,monkey;monkey.patch_all() import time
def task(pid):
"""
Some non-deterministic task
"""
time.sleep(0.5)
print('Task %s done' % pid) def synchronous():
for i in range(10):
task(i) def asynchronous():
g_l=[spawn(task,i) for i in range(10)]
joinall(g_l) if __name__ == '__main__':
print('Synchronous:')
synchronous() print('Asynchronous:')
asynchronous()
#上面程序的重要部分是将task函数封装到Greenlet内部线程的gevent.spawn。 初始化的greenlet列表存放在数组threads中,此数组被传给gevent.joinall 函数,后者阻塞当前流程,并执行所有给定的greenlet。执行流程只会在 所有greenlet执行完后才会继续向下走。
六 Gevent之应用举例一
from gevent import monkey;monkey.patch_all()
import gevent
import requests
import time def get_page(url):
print('GET: %s' %url)
response=requests.get(url)
if response.status_code == 200:
print('%d bytes received from %s' %(len(response.text),url)) start_time=time.time()
gevent.joinall([
gevent.spawn(get_page,'https://www.python.org/'),
gevent.spawn(get_page,'https://www.yahoo.com/'),
gevent.spawn(get_page,'https://github.com/'),
])
stop_time=time.time()
print('run time is %s' %(stop_time-start_time))
协程应用:爬虫
七 Gevent之应用举例二
通过gevent实现单线程下的socket并发(from gevent import monkey;monkey.patch_all()一定要放到导入socket模块之前,否则gevent无法识别socket的阻塞)
from gevent import monkey;monkey.patch_all()
from socket import *
import gevent #如果不想用money.patch_all()打补丁,可以用gevent自带的socket
# from gevent import socket
# s=socket.socket() def server(server_ip,port):
s=socket(AF_INET,SOCK_STREAM)
s.setsockopt(SOL_SOCKET,SO_REUSEADDR,1)
s.bind((server_ip,port))
s.listen(5)
while True:
conn,addr=s.accept()
gevent.spawn(talk,conn,addr) def talk(conn,addr):
try:
while True:
res=conn.recv(1024)
print('client %s:%s msg: %s' %(addr[0],addr[1],res))
conn.send(res.upper())
except Exception as e:
print(e)
finally:
conn.close() if __name__ == '__main__':
server('127.0.0.1',8080)
服务端 服务端
from socket import * client=socket(AF_INET,SOCK_STREAM)
client.connect(('127.0.0.1',8080)) while True:
msg=input('>>: ').strip()
if not msg:continue client.send(msg.encode('utf-8'))
msg=client.recv(1024)
print(msg.decode('utf-8'))
客户端
from threading import Thread
from socket import *
import threading def client(server_ip,port):
c=socket(AF_INET,SOCK_STREAM) #套接字对象一定要加到函数内,即局部名称空间内,放在函数外则被所有线程共享,则大家公用一个套接字对象,那么客户端端口永远一样了
c.connect((server_ip,port)) count=0
while True:
c.send(('%s say hello %s' %(threading.current_thread().getName(),count)).encode('utf-8'))
msg=c.recv(1024)
print(msg.decode('utf-8'))
count+=1
if __name__ == '__main__':
for i in range(500):
t=Thread(target=client,args=('127.0.0.1',8080))
t.start()
多线程并发多个客户端
python并开发编程之协程的更多相关文章
- Python的异步编程[0] -> 协程[0] -> 协程和 async / await
协程 / Coroutine 目录 生产者消费者模型 从生成器到异步协程– async/await 协程是在一个线程执行过程中可以在一个子程序的预定或者随机位置中断,然后转而执行别的子程序,在适当的时 ...
- Python的异步编程[0] -> 协程[1] -> 使用协程建立自己的异步非阻塞模型
使用协程建立自己的异步非阻塞模型 接下来例子中,将使用纯粹的Python编码搭建一个异步模型,相当于自己构建的一个asyncio模块,这也许能对asyncio模块底层实现的理解有更大的帮助.主要参考为 ...
- Python 之并发编程之协程
一.协程 ''' def gen(): for i in range(10): yield i # 初始化生成七函数 返回生成器对象,简称生成器 mygen = gen() for i in myge ...
- Python 多线程、进程、协程上手体验
浅谈 Python 多线程.进程.协程上手体验 前言:浅谈 Python 很多人都认为 Python 的多线程是垃圾(GIL 说这锅甩不掉啊~):本章节主要给你体验下 Python 的两个库 Thre ...
- Python PEP 492 中文翻译——协程与async/await语法
原文标题:PEP 0492 -- Coroutines with async and await syntax 原文链接:https://www.python.org/dev/peps/pep-049 ...
- python并发编程之gevent协程(四)
协程的含义就不再提,在py2和py3的早期版本中,python协程的主流实现方法是使用gevent模块.由于协程对于操作系统是无感知的,所以其切换需要程序员自己去完成. 系列文章 python并发编程 ...
- python并发编程之asyncio协程(三)
协程实现了在单线程下的并发,每个协程共享线程的几乎所有的资源,除了协程自己私有的上下文栈:协程的切换属于程序级别的切换,对于操作系统来说是无感知的,因此切换速度更快.开销更小.效率更高,在有多IO操作 ...
- python单线程,多线程和协程速度对比
在某些应用场景下,想要提高python的并发能力,可以使用多线程,或者协程.比如网络爬虫,数据库操作等一些IO密集型的操作.下面对比python单线程,多线程和协程在网络爬虫场景下的速度. 一,单线程 ...
- Python 线程和进程和协程总结
Python 线程和进程和协程总结 线程和进程和协程 进程 进程是程序执行时的一个实例,是担当分配系统资源(CPU时间.内存等)的基本单位: 进程有独立的地址空间,一个进程崩溃后,在保护模式下不会对其 ...
随机推荐
- 在IIS7上导出全部应用程序池的方法 批量域名绑定
在IIS7+上导出全部应用程序池的方法: %windir%/system32/inetsrv/appcmd list apppool /config /xml > c:/apppools.xml ...
- LeetCode90:Subsets II
Given a collection of integers that might contain duplicates, nums, return all possible subsets. Not ...
- Order笔记-数据库创建
过程: 1,为这个项目新建一个用户名(实例),专门用于这个项目 2,建表 问题: 列在此处不允许: 笔记: 建表设置默认值: alter table 表名 modify 字段名 default 默认值 ...
- TP3.2.3 接入支付宝
TP3.2.3 接入支付宝 项目接入支付宝支付了,在做这个给我的感觉是,方便 ,毕竟是老马的产品是吧, 话不多说 , 首先我们先找到官方的SDK ,不想去找的小伙伴复制此链接 https://doc ...
- Elasticsearch批处理操作——bulk API
Elasticsearch提供的批量处理功能,是通过使用_bulk API实现的.这个功能之所以重要,在于它提供了非常高效的机制来尽可能快的完成多个操作,与此同时使用尽可能少的网络往返. 1.批量索引 ...
- 自学Python2.3-基本数据类型-元组tuple(object) 方法
Python tuple方法总结 一.元组的简介 1.元组与列表一样,也是一种序列,但是唯一不同的元组是不能修改的 2.元组的元素不可修改,但是元组元素的元素是可以修改的 3.元组通过()括起来表示 ...
- Linux:如何进行c++编程
不适应美帝的饮食,当一只咸鱼在apartment里Coding一波,学习学习如何在Ubuntu实现C++的编程 正文如下: (预备知识) 学习Vim: http://www.cnblogs.com/ ...
- 用html和css轻松实现康奈尔笔记(5R笔记)模板
缘起 人家都说康奈尔笔记法,很好用呢,能抵抗遗忘曲线,让你的笔记事半功倍,有兴趣的同学自行百度哈. 网上有很多现成的模板,下载下来之后吧,看着好像在上面写英文可能更方便一点,行距很小,而且还有网址在上 ...
- 每周.NET前沿技术文章摘要(2017-05-10)
汇总国内外.NET社区相关文章,覆盖.NET ,ASP.NET和Docker容器三个方面的内容: .NET Debugging .NET core with SOS everywhere 链接:htt ...
- Coursera深度学习(DeepLearning.ai)编程题&笔记
因为是Jupyter Notebook的形式,所以不方便在博客中展示,具体可在我的github上查看. 第一章 Neural Network & DeepLearning week2 Logi ...