hdu 6133---Army Formations(启发式合并+树状数组)
>
> --- Wookieepedia
Though being cruel and merciless in the battlefields, the total obedience to the command hierarchy makes message delivering between Stormtroopers quite inefficient, which finally caused the escape of Luke Skywalker, the destroy of the Death Star, and the collapse of the Galactic Empire.
In particular, the hierarchy of Stormtroopers is defined by a *binary tree*. Everyone in the tree has at most two direct subordinates and exactly one direct leader, except the first (numbered 1) Stormtrooper, who only obey the order of the Emperor.
It has been a time-consuming task for the Stormtroopers to input messages into his own log system. Suppose that the i-th Stormtrooper has a message of length ai, which means that it costs ai time to input this message into a log system. Everyone in the hierarchy has the mission of collecting all messages from his subordinates (a direct or indirect children in the tree) and input thses messages and his own message into his own log system.
Everyone in the hierarchy wants to optimize the process of inputting. First of all, everyone collects the messages from all his subordinates. For a Stormtrooper, starting from time 0, choose a message and input it into the log system. This process proceeds until all messages from his subordinates and his own message have been input into the log system. If a message is input at time t, it will induce t units of penalty.
For every Stormtrooper in the tree, you should find the minimum penalty.
In each case, there are a number n (1≤n≤105) in the first line, denoting the size of the tree.
The next line contains n integers, the i-th integer denotes ai (0≤ai≤108), the i-th Stormtrooper’s message length.
The following n−1 lines describe the edges of the tree. Each line contains two integers u,v (1≤u,v≤n), denoting there is an edge connecting u and v.
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <vector>
using namespace std;
typedef long long LL;
const int N=1e5+;
int w[N];
int val[N],id[N];
int sz[N],lson[N],rson[N],tot;
vector<int>e[N];
LL num[N],sum[N];
LL ans[N],tmp; int calSize(int now,int pre)
{
sz[now]=;
for(int j=;j<e[now].size();j++)
{
int to=e[now][j];
if(to==pre) continue;
if(!lson[now]) lson[now]=to;
else rson[now]=to;
sz[now]+=calSize(to,now);
}
if(lson[now]&&rson[now]&&sz[lson[now]]>sz[rson[now]])
swap(lson[now],rson[now]);
return sz[now];
}
int lowbit(int x)
{
return x&(-x);
}
void update(LL *a,int x,int y)
{
while(x<=tot)
{
a[x]+=(LL)y;
x+=lowbit(x);
}
}
LL query(LL *a,int x)
{
LL r=;
while(x)
{
r+=a[x];
x-=lowbit(x);
}
return r;
} void add(int x)
{
tmp+=(query(num,tot)-query(num,id[x]))*(LL)w[x]+(LL)w[x];
tmp+=query(sum,id[x]);
update(num,id[x],);
update(sum,id[x],w[x]);
}
void del(int x)
{
update(num,id[x],-);
update(sum,id[x],-w[x]);
tmp-=(query(num,tot)-query(num,id[x]))*(LL)w[x]+(LL)w[x];
tmp-=query(sum,id[x]);
}
void cle(int x)
{
del(x);
if(lson[x]) cle(lson[x]);
if(rson[x]) cle(rson[x]);
}
void validate(int x)
{
add(x);
if(lson[x]) validate(lson[x]);
if(rson[x]) validate(rson[x]);
}
void dfs(int now)
{
if(!lson[now])
{
ans[now]=(LL)w[now];
add(now);
return ;
}
dfs(lson[now]);
if(rson[now])
{
cle(lson[now]);
dfs(rson[now]);
validate(lson[now]);
}
add(now);
ans[now]=tmp;
}
int main()
{
int T; cin>>T;
while(T--)
{
int n; scanf("%d",&n);
for(int i=;i<=n;i++)
{
scanf("%d",&w[i]);
val[i]=w[i];
e[i].clear();
num[i]=sum[i]=;
lson[i]=rson[i]=;
}
sort(val+,val+n+);
tot=unique(val+,val+n+)-val-;
for(int i=;i<=n;i++)
{
id[i]=lower_bound(val+,val+tot+,w[i])-val;
}
for(int i=;i<n;i++)
{
int u,v; scanf("%d%d",&u,&v);
e[u].push_back(v);
e[v].push_back(u);
}
calSize(,-);
tmp=;
dfs();
for(int i=;i<=n;i++)
printf("%lld ",ans[i]);
puts("");
}
return ;
}
hdu 6133---Army Formations(启发式合并+树状数组)的更多相关文章
- HDU 5997 rausen loves cakes(启发式合并 + 树状数组统计答案)
题目链接 rausen loves cakes 题意 给出一个序列和若干次修改和查询.修改为把序列中所有颜色为$x$的修改为$y$, 查询为询问当前$[x, y]$对应的区间中有多少连续颜色段. ...
- #6041. 「雅礼集训 2017 Day7」事情的相似度 [set启发式合并+树状数组扫描线]
SAM 两个前缀的最长后缀等价于两个点的 \(len_{lca}\) , 题目转化为求 \(l \leq x , y \leq r\) , \(max\{len_{lca(x,y)}\}\) // p ...
- hdu 5869 区间不同GCD个数(树状数组)
Different GCD Subarray Query Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65536/65536 K ( ...
- hdu 6203 ping ping ping(LCA+树状数组)
hdu 6203 ping ping ping(LCA+树状数组) 题意:给一棵树,有m条路径,问至少删除多少个点使得这些路径都不连通 \(1 <= n <= 1e4\) \(1 < ...
- hdu 1394 Minimum Inversion Number(树状数组)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1394 题意:给你一个0 — n-1的排列,对于这个排列你可以将第一个元素放到最后一个,问你可能得到的最 ...
- HDU 5792 World is Exploding (树状数组)
World is Exploding 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5792 Description Given a sequence ...
- HDU 5773 The All-purpose Zero(树状数组)
[题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5773 [题目大意] 给出一个非负整数序列,其中的0可以替换成任意整数,问替换后的最长严格上升序列长 ...
- POJ 3928 & hdu 2492 & Uva1428 PingPong 【树状数组】
Ping pong Time Limit: 2000/1000 MS (Java/Others) ...
- BZOJ.3653.谈笑风生(长链剖分/线段树合并/树状数组)
BZOJ 洛谷 \(Description\) 给定一棵树,每次询问给定\(p,k\),求满足\(p,a\)都是\(b\)的祖先,且\(p,a\)距离不超过\(k\)的三元组\(p,a,b\)个数. ...
随机推荐
- Android开发相关操作
命令行启动DDMS工具,前提是有这个工具 ~/rustsoftware/adt-bundle-linux-x86_64-20140702/sdk/tools$ ./ddms 查看机器内存情况: adb ...
- 20170722_php_单例模式
<?php class myClass{ private static $obj = null; private function __construc(){ } public static f ...
- Openfire3.9.1+jdk1.7导入到eclipse中
Openfire3.9.1+jdk1.7导入到eclipse中 写这篇文章,也是记录一下自己几晚上的辛苦,因为作为新手在网上看了很多的资料,但是按照他们的我总是出不来,跟他们描述的不一致,可能是环境问 ...
- JDBC之组件封装
本文所需架包:mysql-connector-java-5.1.7-bin.jar(连接MySQL数据库需要),ojdbc6.jar(连接Oracle数据库需要) 1.JDBC工具类(JDBCUtil ...
- (转)Linux下安装firefox最新版
为了方便在linux服务器上面进行web调试,安装火狐浏览器 1下载 首先去火狐主页,中文是http://www.firefox.com.cn/,点击"免费下载" 2 解压并创建快 ...
- .net 自动分类算法【原创】
目前自动分类算法是参考网上的思路和想法个人自主研发的. 当然互联网上有很多人采用不同的方式去解决自动分类问题,也有不同的算法和论文支持去做,但纵观自动分类这块工作是属于机器学习这块工作内容,总结出来比 ...
- Java之集合初探(二)Iterator(迭代器),collections,打包/解包(装箱拆箱),泛型(Generic),comparable接口
Iterator(迭代器) 所有实现了Collection接口的容器都有一个iterator方法, 用来返回一个实现了Iterator接口的对象 Iterator对象称作迭代器, 用来方便的实现对容器 ...
- Hadoop常用命令集合
查看安全模式 bin/hadoop dfsadmin -safemode enter | leave | get | wait
- Bean 的生命周期 之 后处理Bean
这里先把Bean 的生命周期总结一下,然后引出后处理Bean 首先,Bean 的生命周期总共有11步: 1.instantiate bean对象实例化 2.populate properties 封装 ...
- Java位操作
无论说是在哪一门计算机语言,位操作运算对于计算机来说肯定是最高效的,因为计算机的底层是按就是二进制,而位操作就是为了节省开销,加快程序的执行速度,以及真正的实现对数的二进制操作. 使用位操作 ...