cs231n spring 2017 lecture11 Detection and Segmentation 听课笔记
1. Semantic Segmentation
把每个像素分类到某个语义。
为了减少运算量,会先降采样再升采样。降采样一般用池化层,升采样有各种“Unpooling”、“Transpose Convolution”(文献中也叫“Upconvolution”之类的其他名字)。
这个问题的训练数据的获得非常昂贵,因为需要一个像素一个像素的贴标签。
2. Classification + Localizatoin
一般用同一个网络,一方面得出分类,一方面得出Bounding box的位置和大小。
3. Object Detection
预先设定好要找哪些objects,一旦图片里发现,就框出来。Classification + Localizatoin一般是针对单个物体,而这里是针对多个物体。
Sliding window:计算量太大,舍弃。
Region Proposals:先找可能有物体的图片区域,然后一个个处理,在CPU上大概几秒的时间。这种方法在深度学习之前就出来了。
R-CNN:先找出region proposal,然后把region proposal调整成神经网络需要的大小,然后给神经网络计算,最后通过SVM分类。
训练很慢(84h),也非常耗内存。预测也很慢(47秒 VGG16)
Fast R-CNN:相比R-CNN快很多,训练(8.75h),预测(计算region proposal花2秒,神经网络预测花0.32秒)。
训练的时候把下图中的Linear + softmax和Linear加起来得到multi-task loss。
Faster R-CNN:用卷积层去预测region proposal。比Fast R-CNN更快,预测耗时0.2秒。
YOLO(Redmon et al., CVPR 2016)/SSD(Liu et al, "Single-Shot MultiBox Detecotr", ECCV 2016):这两种方法没有用region proposal,更快,但是相对不那么准。Faster R-CNN更慢,但是更准。
Object Detection + Captioning (DenseCap, CVPR 2016)
4. Instance Segmentation
Semantic Segmentation和Object Detection的结合,找出多个物体,并且判断每个像素属于哪个分类。
Mask R-CNN (He et al., 2017),网络有两个分支,第一个执行Object Detection,第二个执行Semantic Segmentation。这个网络把之前的都融合起来,是集大成者,表现非常非常好。在Object Detection分支加入对人体关节的识别,还能识别人的pose。基于Faster R-CNN,接近real-time。
cs231n spring 2017 lecture11 Detection and Segmentation 听课笔记的更多相关文章
- cs231n spring 2017 lecture11 Detection and Segmentation
1. Semantic Segmentation 把每个像素分类到某个语义. 为了减少运算量,会先降采样再升采样.降采样一般用池化层,升采样有各种“Unpooling”.“Transpose Conv ...
- cs231n spring 2017 lecture12 Visualizing and Understanding 听课笔记
这一节课很零碎. 1. 神经网络到底在干嘛? 浅层的是具体的特征(比如边.角.色块等),高层的更抽象,最后的全连接层是把图片编码成一维向量然后和每一类标签作比较.如果直接把图片和标签做像素级的最近领域 ...
- cs231n spring 2017 lecture10 Recurrent Neural Networks 听课笔记
(没太听明白,下次重新听一遍) 1. Recurrent Neural Networks
- cs231n spring 2017 lecture8 Deep Learning Networks 听课笔记
1. CPU vs. GPU: CPU核心少(几个),更擅长串行任务.GPU有很多核心(几千个),每一个核都弱,有自己的内存(几个G),很适合并行任务.GPU最典型的应用是矩阵运算. GPU编程:1) ...
- cs231n spring 2017 lecture5 Convolutional Neural Networks听课笔记
1. 之前课程里,一个32*32*3的图像被展成3072*1的向量,左乘大小为10*3072的权重矩阵W,可以得到一个10*1的得分,分别对应10类标签. 在Convolution Layer里,图像 ...
- cs231n spring 2017 lecture9 CNN Architectures 听课笔记
参考<deeplearning.ai 卷积神经网络 Week 2 听课笔记>. 1. AlexNet(Krizhevsky et al. 2012),8层网络. 学会计算每一层的输出的sh ...
- cs231n spring 2017 lecture9 CNN Architectures
参考<deeplearning.ai 卷积神经网络 Week 2 听课笔记>. 1. AlexNet(Krizhevsky et al. 2012),8层网络. 学会计算每一层的输出的sh ...
- cs231n spring 2017 lecture13 Generative Models 听课笔记
1. 非监督学习 监督学习有数据有标签,目的是学习数据和标签之间的映射关系.而无监督学习只有数据,没有标签,目的是学习数据额隐藏结构. 2. 生成模型(Generative Models) 已知训练数 ...
- cs231n spring 2017 lecture7 Training Neural Networks II 听课笔记
1. 优化: 1.1 随机梯度下降法(Stochasitc Gradient Decent, SGD)的问题: 1)对于condition number(Hessian矩阵最大和最小的奇异值的比值)很 ...
随机推荐
- 小白的Python之路 day1 表达式if ... else ,while循环,for循环
表达式if ... else 一.用户登陆验证 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 # 提示输入用户名和密码 # 验 ...
- 【java】对象克隆protected Object clone() throws CloneNotSupportedException
package 对象克隆; class A implements Cloneable{//要具备clone()功能必须要实现Cloneable接口,此接口里无方法,只起标识作用. private St ...
- 利用aop插入异常日志的2种方式
AOP是面向切面编程,利用这个技术可以对业务逻辑的各个部分进行隔离,从而使得业务逻辑各个部分的耦合性降低,提高代码的可重用性,同时提高开发效率(来自百度百科). Spring AOP有两种实现方式,一 ...
- Java I/O---RandomAccessFile类(随机访问文件的读取和写入)
1.JDK API中RandomAccessFile类的描述 此类的实例支持对随机访问文件的读取和写入.随机访问文件的行为类似存储在文件系统中的一个大型 byte 数组.存在指向该隐含数组的光标或索引 ...
- Hibernate缓存和状态
缓存是介于应用程序和物理数据源之间,其作用是为了降低应用程序对物理数据源访问的频次,从而提高了应用的运行性能. 缓存的介质一般是内存,所以读写速度很快.但如果缓存中存放的数据量非常大时,也会用硬盘 ...
- 平方根的C语言实现(三) ——最终程序实现
版权申明:本文为博主窗户(Colin Cai)原创,欢迎转帖.如要转贴,必须注明原文网址 http://www.cnblogs.com/Colin-Cai/p/7223254.html 作者:窗户 Q ...
- date 命令详解
date - print or set the system date and time Display the current time in the given FORMAT, or set th ...
- Java集合(一) CopyOnWriteArrayList
CopyOnWriteArrayList 类分析 1. CopyOnWriteArrayList 其中底层实现存放数据是一个Object数组: private volatile transie ...
- java操作时间,将当前时间减一年,减一天,减一个月
在Java中操作时间的时候,常常遇到求一段时间内的某些值,或者计算一段时间之间的天数 Date date = new Date();//获取当前时间 Calendar calendar = Calen ...
- java 快速排序
快速排序比插入排序快了两个数量级 package test.sort; public class Paixu { public static void main(String[] args) { // ...