Hashtable、ConcurrentHashMap源码分析
Hashtable、ConcurrentHashMap源码分析
为什么把这两个数据结构对比分析呢,相信大家都明白。首先二者都是线程安全的,但是二者保证线程安全的方式却是不同的。废话不多说了,从源码的角度分析一下两者的异同,首先给出二者的继承关系图。
Hashtable类属性和方法源码分析
我们还是先给出一张Hashtable类的属性和方法图,其中Entry<K,V>是Hashtable类的静态内部类,该类继承自Map.Entry<K,V>接口。如下将会详细讲解Hashtable类中属性和方法的含义。
- 属性
- Entry<?,?>[] table :Entry类型的数组,用于存储Hashtable中的键值对;
- int count :存储hashtable中有多少个键值对
- int threshold :当count值大于该值是,哈希表扩大容量,进行rehash()
- float loadFactor :threshold=哈希表的初始大小*loadFactor,初始容量默认为11,loadFactor值默认为0.75
- int modCount :实现"fail-fast"机制,在并发集合中对Hashtable进行迭代操作时,若其他线程对Hashtable进行结构性的修改,迭代器会通过比较expectedModCount和modCount是否一致,如果不一致则抛出ConcurrentModificationException异常。如下通过一个抛出ConcurrentModificationException异常的例子说明。
public static void main(String[] args) {
Hashtable<Integer, String> tb = new Hashtable<Integer,String>();
tb.put(1, "BUPT");
tb.put(2, "PKU");
tb.put(3, "THU");
Iterator<Entry<Integer, String>> iter = tb.entrySet().iterator();
while(iter.hasNext()){
Entry<?, ?> entry = (Entry<?, ?>) iter.next(); //此处会抛出异常
System.out.println(entry.getValue());
if("THU".equals(entry.getValue())){
tb.remove(entry.getKey());
}
}
}
/* 输出结果如下:
THU
Exception in thread "main" java.util.ConcurrentModificationException
at java.util.Hashtable$Enumerator.next(Hashtable.java:1367)
at ali.Main.main(Main.java:16) */ConcurrentModificationException异常
Hashtable的remove(Object key)方法见如下方法5,每一次修改hashtable中的数据都更新modCount的值。Hashtable内部类Enumerator<T>的相关部分代码如下:
private class Enumerator<T> implements Enumeration<T>, Iterator<T> {
Entry<?,?>[] table = Hashtable.this.table;
int index = table.length;
Entry<?,?> entry;
Entry<?,?> lastReturned;
int type; /**
* Indicates whether this Enumerator is serving as an Iterator
* or an Enumeration. (true -> Iterator).
*/
boolean iterator; /**
* 遍历之初将hashtable修改的次数赋值给expectedModCount
*/
protected int expectedModCount = modCount; Enumerator(int type, boolean iterator) {
this.type = type;
this.iterator = iterator;
}
//
public boolean hasMoreElements() {
Entry<?,?> e = entry;
int i = index;
Entry<?,?>[] t = table;
/* Use locals for faster loop iteration */
while (e == null && i > 0) {
e = t[--i];
}
entry = e;
index = i;
return e != null;
} @SuppressWarnings("unchecked")
public T nextElement() {
Entry<?,?> et = entry;
int i = index;
Entry<?,?>[] t = table;
/* Use locals for faster loop iteration */
while (et == null && i > 0) {
et = t[--i];
}
entry = et;
index = i;
if (et != null) {
Entry<?,?> e = lastReturned = entry;
entry = e.next;
return type == KEYS ? (T)e.key : (type == VALUES ? (T)e.value : (T)e);
}
throw new NoSuchElementException("Hashtable Enumerator");
} //查看是否还有下一个元素
public boolean hasNext() {
return hasMoreElements();
} public T next() {
//首先判断modCount和expectedModCount是否相等
//由于在主程序中Hashtable对象通过tb.remove()方法修改了modCount的值,使得expectedModCount和modCount不相等而抛出异常
//解决办法就是将tb.remove()方法替换为iter.remove()方法
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
return nextElement();
}
//该方法在remove元素的同时修改了modCount和expectedModCount的值
public void remove() {
if (!iterator)
throw new UnsupportedOperationException();
if (lastReturned == null)
throw new IllegalStateException("Hashtable Enumerator");
if (modCount != expectedModCount)
throw new ConcurrentModificationException(); synchronized(Hashtable.this) {
Entry<?,?>[] tab = Hashtable.this.table;
int index = (lastReturned.hash & 0x7FFFFFFF) % tab.length; @SuppressWarnings("unchecked")
Entry<K,V> e = (Entry<K,V>)tab[index];
for(Entry<K,V> prev = null; e != null; prev = e, e = e.next) {
if (e == lastReturned) {
modCount++;
expectedModCount++;
if (prev == null)
tab[index] = e.next;
else
prev.next = e.next;
count--;
lastReturned = null;
return;
}
}
throw new ConcurrentModificationException();
}
}
}Enumerator类
- 方法
- contains(Object value),该方法是判断该hashtable中是否含有值为value的键值对,执行该方法需要加锁(synchronized)。hashtable中不允许存储空的value,所以当查找value为空时,直接抛出空指针异常。接下来是两个for循环遍历table。由如上的Entry实体类中的属性可以看出,next属性是指向与该实体拥有相同hashcode的下一个实体。
- containsKey(Object key),该方法是判断该hashtable中是否含有键为key的键值对,执行该方法也需要对整张table加锁(synchronized)。首先根据当前给出的key值计算hashcode,并有hashcode值计算该key所在table数组中的下标,依次遍历该下标中的每一个Entry对象e。由于不同的hashcode映射到数组中下标的位置可能相同,因此首先判断e的hashcode值和所查询key的hashcode值是否相同,如果相同在判断key是否相等。
get(Object key),获取当前键key所对应的value值,本方法和containsKey(Object key)方法除了返回值其它都相同,如果能找到该key对应的value,则返回value的值,如果不能则返回null。
put(K key, V value),将该键值对加入table中。首先插入的value不能为空。其次如果当前插入的key值已经在table中存在,则用新的value替换掉原来的value值,并将原来的value值作为该方法的返回值返回。如果当前插入的key不在table中,则将该键值对插入。
插入的方法首先判断当前table中的值是否大于阈值(threshold),如果大于该阈值,首先对该表扩容,再将新的键值对插入table[index]的链表的第一个Entry的位置上。
- remove(Object key),将键为key的Entry从table表中移除。同样该方法也需要锁定整个table表。如果该table中存在该键,则返回删除的key的value值,如果当前table中不存在该key,则该方法的返回值为null。
replace(K key, V value),将键为key的Entry对象值更新为value,并将原来的value最为该方法的返回值。
ConcurrentHashMap类属性和方法源码分析
ConcurrentHashMap在JDK1.8中改动还是挺大的。它摒弃了Segment(段锁)的概念,在实现上采用了CAS算法。底层使用数组+链表+红黑树的方式,但是为了做到并发,同时也增加了大量的辅助类。如下是ConcurrentHashMap的类图。
- 属性
//ConcurrentHashMap最大容量
private static final int MAXIMUM_CAPACITY = 1 << 30; //ConcurrentHashMap初始默认容量
private static final int DEFAULT_CAPACITY = 16; //最大table数组的大小
static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8; //默认并行级别,主体代码并未使用
private static final int DEFAULT_CONCURRENCY_LEVEL = 16; //加载因子,默认为0.75
private static final float LOAD_FACTOR = 0.75f; //当hash桶中hash冲突的数目大于此值时,将链表转化为红黑树,加快hash的查找速度
static final int TREEIFY_THRESHOLD = 8; //当hash桶中hash冲突小于等于此值时,会把红黑树转化为链表
static final int UNTREEIFY_THRESHOLD = 6; //当table数组的长度大于该值时,同时满足hash桶中hash冲突大于TREEIFY_THRESHOLD时,才会把链表转化为红黑树
static final int MIN_TREEIFY_CAPACITY = 64; //扩容操作中,transfer()方法允许多线程,该值表示一个线程执行transfer时,至少对连续的多少个hash桶进行transfer
private static final int MIN_TRANSFER_STRIDE = 16; //ForwardingNode的hash值,ForwardingNode是一种临时节点,在扩容中才会出现,不存储实际的数据
static final int MOVED = -1; //TreeBin的hash值,TreeBin是用于代理TreeNode的特殊节点,存储红黑树的根节点
static final int TREEBIN = -2; //用于和负数hash进行&运算,将其转化为正数
static final int HASH_BITS = 0x7fffffff;
- 基本类
- Node<K,V>:基本结点/普通节点。当table中的Entry以链表形式存储时才使用,存储实际数据。此类不会在ConcurrentHashMap以外被修改,而且该类的key和value永远不为null(其子类可为null,随后会介绍)。
static class Node<K,V> implements Map.Entry<K,V> {
final int hash;
final K key;
volatile V val;
volatile Node<K,V> next; Node(int hash, K key, V val, Node<K,V> next) {
this.hash = hash;
this.key = key;
this.val = val;
this.next = next;
} public final K getKey() { return key; }
public final V getValue() { return val; }
public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
public final String toString(){ return key + "=" + val; }
//不支持直接设置value的值
public final V setValue(V value) {
throw new UnsupportedOperationException();
} public final boolean equals(Object o) {
Object k, v, u; Map.Entry<?,?> e;
return ((o instanceof Map.Entry) &&
(k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
(v = e.getValue()) != null &&
(k == key || k.equals(key)) &&
(v == (u = val) || v.equals(u)));
} //从当前节点查找对应的键为k的Node<K,V>
Node<K,V> find(int h, Object k) {
Node<K,V> e = this;
if (k != null) {
do {
K ek;
if (e.hash == h &&
((ek = e.key) == k || (ek != null && k.equals(ek))))
return e;
} while ((e = e.next) != null);
}
return null;
}
}Node<K,V>
- TreeNode:红黑树结点。当table中的Entry以红黑树的形式存储时才会使用,存储实际数据。ConcurrentHashMap中对TreeNode结点的操作都会由TreeBin代理执行。当满足条件时hash会由链表变为红黑树,但是TreeNode中通过属性prev依然保留链表的指针。
static final class TreeNode<K,V> extends Node<K,V> {
TreeNode<K,V> parent; // red-black tree links
TreeNode<K,V> left;
TreeNode<K,V> right;
//当前节点的前一个结点,从而方便删除
TreeNode<K,V> prev; // needed to unlink next upon deletion
boolean red; TreeNode(int hash, K key, V val, Node<K,V> next,
TreeNode<K,V> parent) {
super(hash, key, val, next);
this.parent = parent;
} Node<K,V> find(int h, Object k) {
return findTreeNode(h, k, null);
} //查找hashcode为h,key为k的TreeNode结点
final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
if (k != null) {
TreeNode<K,V> p = this;
do {
int ph, dir; K pk; TreeNode<K,V> q;
TreeNode<K,V> pl = p.left, pr = p.right;
if ((ph = p.hash) > h)
p = pl;
else if (ph < h)
p = pr;
else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
return p;
else if (pl == null)
p = pr;
else if (pr == null)
p = pl;
else if ((kc != null ||
(kc = comparableClassFor(k)) != null) &&
(dir = compareComparables(kc, k, pk)) != 0)
p = (dir < 0) ? pl : pr;
else if ((q = pr.findTreeNode(h, k, kc)) != null)
return q;
else
p = pl;
} while (p != null);
}
return null;
}
}TreeNode<K,V>
- ForwardingNode:转发结点。该节点是一种临时结点,只有在扩容进行中才会出现,其为Node的子类,该节点的hash值固定为-1,并且他不存储实际数据。如果旧table的一个hash桶中全部结点都迁移到新的数组中,旧table就在桶中放置一个ForwardingNode。当读操作或者迭代操作遇到ForwardingNode时,将操作转发到扩容后新的table数组中去执行,当写操作遇见ForwardingNode时,则尝试帮助扩容。
static final class ForwardingNode<K,V> extends Node<K,V> {
final Node<K,V>[] nextTable;
//构造函数指定hash值为MOVED,key=null, value=null, next=null
ForwardingNode(Node<K,V>[] tab) {
super(MOVED, null, null, null);
this.nextTable = tab;
} Node<K,V> find(int h, Object k) {
//for循环避免多次遇见ForwardingNode导致递归过深
outer: for (Node<K,V>[] tab = nextTable;;) {
Node<K,V> e; int n;
if (k == null || tab == null || (n = tab.length) == 0 ||
(e = tabAt(tab, (n - 1) & h)) == null)
return null;
for (;;) {
int eh; K ek;
if ((eh = e.hash) == h &&
((ek = e.key) == k || (ek != null && k.equals(ek))))
return e;
if (eh < 0) {
//如果遇见ForwardingNode结点,则遍历ForwardingNode的nextTable结点
if (e instanceof ForwardingNode) {
tab = ((ForwardingNode<K,V>)e).nextTable;
continue outer;
}
else
return e.find(h, k);
}
if ((e = e.next) == null)
return null;
}
}
}
}ForwardingNode<K,V>
补充图一张说明扩容下是如何遍历结点的。
- TreeBin:代理操作TreeNode结点。该节点的hash值固定为-2,存储实际数据的红黑树的根节点。因为红黑树进行写入操作整个树的结构可能发生很大变化,会影响到读线程。因此TreeBin需要维护一个简单的读写锁,不用考虑写-写竞争的情况。当然并不是全部的写操作都需要加写锁,只有部分put/remove需要加写锁。
static final class TreeBin<K,V> extends Node<K,V> {
TreeNode<K,V> root; //红黑树的根节点
volatile TreeNode<K,V> first; //链表的头结点
volatile Thread waiter; //最近一个设置waiter标志位的线程
volatile int lockState; //全局的锁状态
// values for lockState
static final int WRITER = 1; // set while holding write lock 写锁状态
static final int WAITER = 2; // set when waiting for write lock 等待获取写锁的状态
static final int READER = 4; // increment value for setting read lock 读锁状态,读锁可以叠加,即红黑树可以并发读,每增加一个读线程lockState的值加READER /**
* 红黑树的读锁状态和写锁状态是互斥的,但是读写操作实际上可以是不互斥的
* 红黑树的读写状态互斥是指以红黑树的方式进行读写操作时互斥的
* 当线程持有红黑树的写锁时,读线程不能以红黑树的方式进行读取操作,但可以用简单链表的方式读取,从而实现了读写操作的并发执行
* 当有线程持有红黑树的读锁时,写线程会阻塞,但是红黑树查找速度快,因此写线程阻塞时间短。
* put/remove/replace方法会锁住TreeBin节点,因此不会出现写-写竞争。
*/
//当hashCode相等且不是Comparable类时使用此方法判断大小
static int tieBreakOrder(Object a, Object b) {
int d;
if (a == null || b == null ||
(d = a.getClass().getName().
compareTo(b.getClass().getName())) == 0)
d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
-1 : 1);
return d;
} //以b为头节点的链表创建红黑树
TreeBin(TreeNode<K,V> b) {
super(TREEBIN, null, null, null);
this.first = b;
TreeNode<K,V> r = null;
for (TreeNode<K,V> x = b, next; x != null; x = next) {
next = (TreeNode<K,V>)x.next;
x.left = x.right = null;
if (r == null) {
x.parent = null;
x.red = false;
r = x;
}
else {
K k = x.key;
int h = x.hash;
Class<?> kc = null;
for (TreeNode<K,V> p = r;;) {
int dir, ph;
K pk = p.key;
if ((ph = p.hash) > h)
dir = -1;
else if (ph < h)
dir = 1;
else if ((kc == null &&
(kc = comparableClassFor(k)) == null) ||
(dir = compareComparables(kc, k, pk)) == 0)
dir = tieBreakOrder(k, pk);
TreeNode<K,V> xp = p;
if ((p = (dir <= 0) ? p.left : p.right) == null) {
x.parent = xp;
if (dir <= 0)
xp.left = x;
else
xp.right = x;
r = balanceInsertion(r, x);
break;
}
}
}
}
this.root = r;
assert checkInvariants(root);
} /**
* 红黑树重构时西药对根节点加写锁
*/
private final void lockRoot() {
//尝试获取一次锁
if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
contendedLock(); //直到获取到写锁,该方法才返回
} /**
* 释放写锁
*/
private final void unlockRoot() {
lockState = 0;
} /**
* 阻塞写线程,当写线程获取写锁时返回
*因为ConcurrentHashMap的put/remove/replace方法会对TreeBin加锁,因此不会出现写-写竞争
*因此该方法只用考虑读锁线程阻碍线程获取写锁,而不用考虑写锁线程阻碍线程获取写锁,不用考虑写-写竞争
*/
private final void contendedLock() {
boolean waiting = false;
for (int s;;) {
//~WAITER表示反转WAITER,当没哟线程持有读锁时,该条件为true
if (((s = lockState) & ~WAITER) == 0) {
if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
//没有任何线程持有读写锁时,尝试让当前线程获取写锁,同时清空waiter标识位
if (waiting)
waiter = null;
return;
}
}
else if ((s & WAITER) == 0) { //当前线程持有读锁,并且当前线程不是WAITER状态时,该条件为true
if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) { //尝试占据WAITER标识位
waiting = true; //表明自己处于waiter状态
waiter = Thread.currentThread();
}
}
else if (waiting) //当前线程持有读锁,并且当前线程处于waiter状态时,该条件为true
LockSupport.park(this); //阻塞自己
}
} /**
* 从根节点开始查找,找不到返回null
* 当有写线程加上写锁时,使用链表方式进行查找
*/
final Node<K,V> find(int h, Object k) {
if (k != null) {
for (Node<K,V> e = first; e != null; ) {
int s; K ek;
//两种特殊情况下以链表的方式进行查找
//1、有线程正持有 写锁,这样做能够不阻塞读线程
//2、WAITER时,不再继续加 读锁,能够让已经被阻塞的写线程尽快恢复运行,或者刚好让某个写线程不被阻塞
if (((s = lockState) & (WAITER|WRITER)) != 0) {
if (e.hash == h &&
((ek = e.key) == k || (ek != null && k.equals(ek))))
return e;
e = e.next;
}
// 读线程数量加1,读状态进行累加
else if (U.compareAndSwapInt(this, LOCKSTATE, s,
s + READER)) {
TreeNode<K,V> r, p;
try {
p = ((r = root) == null ? null :
r.findTreeNode(h, k, null));
} finally {
Thread w;
// 如果这是最后一个读线程,并且有写线程因为 读锁 而阻塞,那么要通知它,告诉它可以尝试获取写锁了
if (U.getAndAddInt(this, LOCKSTATE, -READER) ==
(READER|WAITER) && (w = waiter) != null)
LockSupport.unpark(w); // 让被阻塞的写线程运行起来,重新去尝试获取写锁
}
return p;
}
}
}
return null;
} /**
*在ConcurrentHashMap的putVal方法如果hash桶为红黑树时调用
*/
final TreeNode<K,V> putTreeVal(int h, K k, V v) {
Class<?> kc = null;
boolean searched = false;
for (TreeNode<K,V> p = root;;) {
int dir, ph; K pk;
if (p == null) {
first = root = new TreeNode<K,V>(h, k, v, null, null);
break;
}
else if ((ph = p.hash) > h)
dir = -1;
else if (ph < h)
dir = 1;
else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
return p;
else if ((kc == null &&
(kc = comparableClassFor(k)) == null) ||
(dir = compareComparables(kc, k, pk)) == 0) {
if (!searched) {
TreeNode<K,V> q, ch;
searched = true;
if (((ch = p.left) != null &&
(q = ch.findTreeNode(h, k, kc)) != null) ||
((ch = p.right) != null &&
(q = ch.findTreeNode(h, k, kc)) != null))
return q;
}
dir = tieBreakOrder(k, pk);
} TreeNode<K,V> xp = p;
if ((p = (dir <= 0) ? p.left : p.right) == null) {
TreeNode<K,V> x, f = first;
first = x = new TreeNode<K,V>(h, k, v, f, xp);
if (f != null)
f.prev = x;
if (dir <= 0)
xp.left = x;
else
xp.right = x;
if (!xp.red)
x.red = true;
else {
lockRoot();
try {
root = balanceInsertion(root, x);
} finally {
unlockRoot();
}
}
break;
}
}
assert checkInvariants(root);
return null;
} /**
* 从链表和红黑树上都删除结点
* 两点区别:1、返回值,红黑树的规模太小时,返回true,调用者再去进行树->链表的转化;
* 2、红黑树规模足够,不用变换成链表时,进行红黑树上的删除要加 写锁
*/
final boolean removeTreeNode(TreeNode<K,V> p) {
TreeNode<K,V> next = (TreeNode<K,V>)p.next;
TreeNode<K,V> pred = p.prev; // unlink traversal pointers
TreeNode<K,V> r, rl;
if (pred == null)
first = next;
else
pred.next = next;
if (next != null)
next.prev = pred;
if (first == null) {
root = null;
return true;
}
if ((r = root) == null || r.right == null || // too small
(rl = r.left) == null || rl.left == null)
return true;
lockRoot();
try {
TreeNode<K,V> replacement;
TreeNode<K,V> pl = p.left;
TreeNode<K,V> pr = p.right;
if (pl != null && pr != null) {
TreeNode<K,V> s = pr, sl;
while ((sl = s.left) != null) // find successor
s = sl;
boolean c = s.red; s.red = p.red; p.red = c; // swap colors
TreeNode<K,V> sr = s.right;
TreeNode<K,V> pp = p.parent;
if (s == pr) { // p was s's direct parent
p.parent = s;
s.right = p;
}
else {
TreeNode<K,V> sp = s.parent;
if ((p.parent = sp) != null) {
if (s == sp.left)
sp.left = p;
else
sp.right = p;
}
if ((s.right = pr) != null)
pr.parent = s;
}
p.left = null;
if ((p.right = sr) != null)
sr.parent = p;
if ((s.left = pl) != null)
pl.parent = s;
if ((s.parent = pp) == null)
r = s;
else if (p == pp.left)
pp.left = s;
else
pp.right = s;
if (sr != null)
replacement = sr;
else
replacement = p;
}
else if (pl != null)
replacement = pl;
else if (pr != null)
replacement = pr;
else
replacement = p;
if (replacement != p) {
TreeNode<K,V> pp = replacement.parent = p.parent;
if (pp == null)
r = replacement;
else if (p == pp.left)
pp.left = replacement;
else
pp.right = replacement;
p.left = p.right = p.parent = null;
} root = (p.red) ? r : balanceDeletion(r, replacement); if (p == replacement) { // detach pointers
TreeNode<K,V> pp;
if ((pp = p.parent) != null) {
if (p == pp.left)
pp.left = null;
else if (p == pp.right)
pp.right = null;
p.parent = null;
}
}
} finally {
unlockRoot();
}
assert checkInvariants(root);
return false;
} /* ------------------------------------------------------------ */
// 如下是红黑树的经典算法 static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
TreeNode<K,V> p) {
TreeNode<K,V> r, pp, rl;
if (p != null && (r = p.right) != null) {
if ((rl = p.right = r.left) != null)
rl.parent = p;
if ((pp = r.parent = p.parent) == null)
(root = r).red = false;
else if (pp.left == p)
pp.left = r;
else
pp.right = r;
r.left = p;
p.parent = r;
}
return root;
} static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
TreeNode<K,V> p) {
TreeNode<K,V> l, pp, lr;
if (p != null && (l = p.left) != null) {
if ((lr = p.left = l.right) != null)
lr.parent = p;
if ((pp = l.parent = p.parent) == null)
(root = l).red = false;
else if (pp.right == p)
pp.right = l;
else
pp.left = l;
l.right = p;
p.parent = l;
}
return root;
} static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
TreeNode<K,V> x) {
x.red = true;
for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
if ((xp = x.parent) == null) {
x.red = false;
return x;
}
else if (!xp.red || (xpp = xp.parent) == null)
return root;
if (xp == (xppl = xpp.left)) {
if ((xppr = xpp.right) != null && xppr.red) {
xppr.red = false;
xp.red = false;
xpp.red = true;
x = xpp;
}
else {
if (x == xp.right) {
root = rotateLeft(root, x = xp);
xpp = (xp = x.parent) == null ? null : xp.parent;
}
if (xp != null) {
xp.red = false;
if (xpp != null) {
xpp.red = true;
root = rotateRight(root, xpp);
}
}
}
}
else {
if (xppl != null && xppl.red) {
xppl.red = false;
xp.red = false;
xpp.red = true;
x = xpp;
}
else {
if (x == xp.left) {
root = rotateRight(root, x = xp);
xpp = (xp = x.parent) == null ? null : xp.parent;
}
if (xp != null) {
xp.red = false;
if (xpp != null) {
xpp.red = true;
root = rotateLeft(root, xpp);
}
}
}
}
}
} static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
TreeNode<K,V> x) {
for (TreeNode<K,V> xp, xpl, xpr;;) {
if (x == null || x == root)
return root;
else if ((xp = x.parent) == null) {
x.red = false;
return x;
}
else if (x.red) {
x.red = false;
return root;
}
else if ((xpl = xp.left) == x) {
if ((xpr = xp.right) != null && xpr.red) {
xpr.red = false;
xp.red = true;
root = rotateLeft(root, xp);
xpr = (xp = x.parent) == null ? null : xp.right;
}
if (xpr == null)
x = xp;
else {
TreeNode<K,V> sl = xpr.left, sr = xpr.right;
if ((sr == null || !sr.red) &&
(sl == null || !sl.red)) {
xpr.red = true;
x = xp;
}
else {
if (sr == null || !sr.red) {
if (sl != null)
sl.red = false;
xpr.red = true;
root = rotateRight(root, xpr);
xpr = (xp = x.parent) == null ?
null : xp.right;
}
if (xpr != null) {
xpr.red = (xp == null) ? false : xp.red;
if ((sr = xpr.right) != null)
sr.red = false;
}
if (xp != null) {
xp.red = false;
root = rotateLeft(root, xp);
}
x = root;
}
}
}
else { // symmetric
if (xpl != null && xpl.red) {
xpl.red = false;
xp.red = true;
root = rotateRight(root, xp);
xpl = (xp = x.parent) == null ? null : xp.left;
}
if (xpl == null)
x = xp;
else {
TreeNode<K,V> sl = xpl.left, sr = xpl.right;
if ((sl == null || !sl.red) &&
(sr == null || !sr.red)) {
xpl.red = true;
x = xp;
}
else {
if (sl == null || !sl.red) {
if (sr != null)
sr.red = false;
xpl.red = true;
root = rotateLeft(root, xpl);
xpl = (xp = x.parent) == null ?
null : xp.left;
}
if (xpl != null) {
xpl.red = (xp == null) ? false : xp.red;
if ((sl = xpl.left) != null)
sl.red = false;
}
if (xp != null) {
xp.red = false;
root = rotateRight(root, xp);
}
x = root;
}
}
}
}
} /**
* 递归检查,确保构造的是正确无误的红黑树
*/
static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
tb = t.prev, tn = (TreeNode<K,V>)t.next;
if (tb != null && tb.next != t)
return false;
if (tn != null && tn.prev != t)
return false;
if (tp != null && t != tp.left && t != tp.right)
return false;
if (tl != null && (tl.parent != t || tl.hash > t.hash))
return false;
if (tr != null && (tr.parent != t || tr.hash < t.hash))
return false;
if (t.red && tl != null && tl.red && tr != null && tr.red)
return false;
if (tl != null && !checkInvariants(tl))
return false;
if (tr != null && !checkInvariants(tr))
return false;
return true;
}
// Unsafe相关的初始化工作
private static final sun.misc.Unsafe U;
private static final long LOCKSTATE;
static {
try {
U = sun.misc.Unsafe.getUnsafe();
Class<?> k = TreeBin.class;
LOCKSTATE = U.objectFieldOffset
(k.getDeclaredField("lockState"));
} catch (Exception e) {
throw new Error(e);
}
}
}TreeBin<K,V>
- ReservationNode:保留结点,也被称为空节点。该节点的hash值固定为-3,不保存实际数据。正常的写操作都需要对hash桶的第一个节点进行加锁,如果hash桶的第一个节点为null时是无法加锁的,因此需要new一个ReservationNode节点,作为hash桶的第一个节点,对该节点进行加锁。
static final class ReservationNode<K,V> extends Node<K,V> {
ReservationNode() {
super(RESERVED, null, null, null);
} Node<K,V> find(int h, Object k) {
return null;
}
}ReservationNode<K,V>
- ConcurrentHashMap方法
首先介绍一些基本的方法,这些方法不会直接用到,但却是理解ConcurrentHashMap常见方法前提,因为这些方法被ConcurrentHashMap常见的方法调用。然后在介绍完这些基本方法的基础上,再分析常见的containsValue、put、remove等常见方法。
- Node<K,V>[] initTable():初始化table的方法。初始化这个工作不是在构造函数中执行的,而是在put方法中执行,put方法中发现table为null时,调用该方法。
private final Node<K,V>[] initTable() {
Node<K,V>[] tab; int sc;
while ((tab = table) == null || tab.length == 0) {
if ((sc = sizeCtl) < 0)
//真正的初始化是要禁止并发的,保证tables数组只被初始化一次,但又不能切换线程,所以需要yield()让出CPU
Thread.yield(); // lost initialization race; just spin
else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) { //更新sizeCtl标识为初始化状态
try {
//如果当前表为空,初始化table表
if ((tab = table) == null || tab.length == 0) {
int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
@SuppressWarnings("unchecked")
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
table = tab = nt;
sc = n - (n >>> 2); //设置阈值为总长度的0.75,从而可看出loadFactor没有用到
}
} finally {
sizeCtl = sc; //设置阈值
}
break;
}
}
return tab;
}initTable方法
- 如下几个方法是用于读取table数组,使用Unsafe提供更强的功能代替普通的读写。
//volatile读取table[i]
static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
}
//CAS更新table[i],更新Node链表的头节点,或者TreeBin节点
static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
Node<K,V> c, Node<K,V> v) {
return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
}
//volatile写入table[i]
static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
}
//尝试将链表转化为红黑树
private final void treeifyBin(Node<K,V>[] tab, int index) {
Node<K,V> b; int n, sc;
if (tab != null) {
//当table的length小于64时,只进行一次扩容
if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
tryPresize(n << 1);
//将链表转化为红黑树
else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
synchronized (b) {
if (tabAt(tab, index) == b) {
TreeNode<K,V> hd = null, tl = null;
for (Node<K,V> e = b; e != null; e = e.next) {
TreeNode<K,V> p =
new TreeNode<K,V>(e.hash, e.key, e.val,
null, null);
if ((p.prev = tl) == null)
hd = p;
else
tl.next = p;
tl = p;
}
setTabAt(tab, index, new TreeBin<K,V>(hd));
}
}
}
}
}
//将红黑树转化为链表,在调用此方法时synchronized加锁,这里不再需要加锁
static <K,V> Node<K,V> untreeify(Node<K,V> b) {
Node<K,V> hd = null, tl = null;
for (Node<K,V> q = b; q != null; q = q.next) {
Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val, null);
if (tl == null)
hd = p;
else
tl.next = p;
tl = p;
}
return hd;
} - 扩容方法:扩容分为两个步骤:第一步新建一个2倍大小的数组(单线程完成),第二步是rehash,把旧数组中的数据重新计算hash值放入新数组中。ConcurrentHashMap在第二步中处理旧table[index]中的节点时,这些节点要么在新table[index]处,要么在新table[index]和table[index+n]处,因此旧table各hash桶中的节点迁移不相互影响。ConcurrentHashMap扩容可以在多线程下完成,因此就需要计算每个线程需要负责处理多少个hash桶。
int n = tab.length, stride;
if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
stride = MIN_TRANSFER_STRIDE; // 最小值为16计算每个transfer处理桶的个数
计算完成之后每个transfer按照计算的值处理相应下标位置的桶,扩容操作从旧数组的末尾向前一次对hash桶进行处理。从末尾向前处理主要是减少和遍历数据时的锁冲突。从旧数组的末尾向前代码如下:
//标记一个transfer任务是否完成,完成为true,否则为false
boolean advance = true;
//标记整个扩容任务是否完成
boolean finishing = false; // to ensure sweep before committing nextTab
//仅截取部分代码片段,其中i表示当前transfer处理的hash桶的index,而bound表示当前transfer需要处理的hash桶的index的下界
while (advance) {
int nextIndex, nextBound;
if (--i >= bound || finishing) //表明一次transfer未执行完毕
advance = false;
else if ((nextIndex = transferIndex) <= 0) { //transfer任务完成,可以准备退出扩容
i = -1;
advance = false;
}
//尝试申请transfer任务
else if (U.compareAndSwapInt
(this, TRANSFERINDEX, nextIndex,
nextBound = (nextIndex > stride ?
nextIndex - stride : 0))) {
bound = nextBound; //transfer任务中hash桶的下界
i = nextIndex - 1; //transfer当前处理的hash桶的index
advance = false;
}
}计算每个transfer处理hash桶的区域
扩容部分的完整代码如下:
//x表示扩容需要增加的值
//check表示计数操作是否会触发扩容,check<0表示不会触发
//check<=1说明线程更新计数时没有遇到竞争
private final void addCount(long x, int check) {
CounterCell[] as; long b, s;
if ((as = counterCells) != null ||
!U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
CounterCell a; long v; int m;
boolean uncontended = true;
if (as == null || (m = as.length - 1) < 0 ||
(a = as[ThreadLocalRandom.getProbe() & m]) == null ||
!(uncontended =
U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
fullAddCount(x, uncontended);
return;
}
if (check <= 1)
return;
s = sumCount();
}
if (check >= 0) { //检测是否扩容
Node<K,V>[] tab, nt; int n, sc;
//扩容基本条件
while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
(n = tab.length) < MAXIMUM_CAPACITY) {
int rs = resizeStamp(n); //计算本次扩容生成戳
if (sc < 0) { //表明此时没有其他线程扩容
//5个条件只要有一个为true,则当前线程不能帮助扩容
if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
transferIndex <= 0)
break;
//前5个条件都为false时尝试此次扩容,将正在执行transfer任务的线程数+1
if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
transfer(tab, nt);
}
//尝试让当前线程成为第一个执行transfer任务的线程
else if (U.compareAndSwapInt(this, SIZECTL, sc,
(rs << RESIZE_STAMP_SHIFT) + 2))
transfer(tab, null); //执行扩容
s = sumCount(); //重新计数看是否需要下一次扩容
}
}
} /**
* Helps transfer if a resize is in progress.
* 如果正在进行扩容,则尝试帮助执行transfer任务
*/
final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
Node<K,V>[] nextTab; int sc;
//判断是否仍然在执行扩容
if (tab != null && (f instanceof ForwardingNode) &&
(nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
int rs = resizeStamp(tab.length); //计算扩容生成戳
//再次判断是否正在执行扩容
while (nextTab == nextTable && table == tab &&
(sc = sizeCtl) < 0) {
// 判断下是否能真正帮助此次扩容
if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
sc == rs + MAX_RESIZERS || transferIndex <= 0)
break; //不能帮助则终止
if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {
transfer(tab, nextTab); //否则执行此次扩容
break;
}
}
return nextTab; //返回扩容后的数组
}
return table; //如果是返回table说明扩容已经结束,table被其它线程赋值新数组
} //预先扩容,包含初始化逻辑的扩容
//用于putAll,此时是需要考虑初始化;链表转化为红黑树中,不满足table容量条件时,进行一次扩容,此时就是普通的扩容
private final void tryPresize(int size) {
int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
tableSizeFor(size + (size >>> 1) + 1);
int sc;
while ((sc = sizeCtl) >= 0) {
Node<K,V>[] tab = table; int n;
if (tab == null || (n = tab.length) == 0) { //用于处理初始化,跟initTable方法相同
n = (sc > c) ? sc : c;
if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
try {
if (table == tab) {
@SuppressWarnings("unchecked")
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
table = nt;
sc = n - (n >>> 2);
}
} finally {
sizeCtl = sc;
}
}
}
// c <= sc,说明已经被扩容过了;n >= MAXIMUM_CAPACITY说明table数组已经到了最大长度
else if (c <= sc || n >= MAXIMUM_CAPACITY)
break;
else if (tab == table) { //可以进行扩容
int rs = resizeStamp(n);
if (sc < 0) {
Node<K,V>[] nt;
if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
transferIndex <= 0)
break;
if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
transfer(tab, nt);
}
else if (U.compareAndSwapInt(this, SIZECTL, sc,
(rs << RESIZE_STAMP_SHIFT) + 2))
transfer(tab, null);
}
}
} // 执行节点迁移,准确地说是迁移内容,因为很多节点都需要进行复制,复制能够保证读操作尽量不受影响
private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
int n = tab.length, stride;
if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
stride = MIN_TRANSFER_STRIDE; //计算每个transfer负责处理多少个hash桶
if (nextTab == null) { //初始化Node数组
try {
@SuppressWarnings("unchecked")
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
nextTab = nt;
} catch (Throwable ex) { // try to cope with OOME
sizeCtl = Integer.MAX_VALUE;
return;
}
nextTable = nextTab;
transferIndex = n;
}
int nextn = nextTab.length;
// 转发节点,在旧数组的一个hash桶中所有节点都被迁移完后,放置在这个hash桶中,表明已经迁移完,对它的读操作会转发到新数组
ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
boolean advance = true;
boolean finishing = false; //标识扩容工作是否完成
for (int i = 0, bound = 0;;) {
Node<K,V> f; int fh;
while (advance) {
int nextIndex, nextBound;
if (--i >= bound || finishing) // 一次transfer还未执行完毕
advance = false;
else if ((nextIndex = transferIndex) <= 0) { // transfer任务已经没有了,表明可以准备退出扩容了
i = -1;
advance = false;
}
//尝试申请transfer任务
else if (U.compareAndSwapInt
(this, TRANSFERINDEX, nextIndex,
nextBound = (nextIndex > stride ?
nextIndex - stride : 0))) {
// transfer申请到任务后标记自己的任务区间
bound = nextBound;
i = nextIndex - 1;
advance = false;
}
}
//处理扩容重叠
if (i < 0 || i >= n || i + n >= nextn) {
int sc;
if (finishing) { //扩容完成
nextTable = null;
table = nextTab;
sizeCtl = (n << 1) - (n >>> 1);
return;
}
// 尝试把正在执行扩容的线程数减1,表明自己要退出扩容
if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
// 判断下自己是不是本轮扩容中的最后一个线程,如果不是,则直接退出。
if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
return;
finishing = advance = true;
//最后一个扩容的线程要重新检查一次旧数组的所有hash桶,看是否是都被正确迁移到新数组了。
// 正常情况下,重新检查时,旧数组所有hash桶都应该是转发节点,此时这个重新检查的工作很快就会执行完。
// 特殊情况,比如扩容重叠,那么会有线程申请到了transfer任务,但是参数错误(旧数组和新数组对不上,不是2倍长度的关系),
// 此时这个线程领取的任务会作废,那么最后检查时,还要处理因为作废二没有被迁移的hash桶,把它们正确迁移到新数组中
i = n; // recheck before commit
}
}
else if ((f = tabAt(tab, i)) == null) // hash桶本身为null,不用迁移,直接尝试安放一个转发节点
advance = casTabAt(tab, i, null, fwd);
else if ((fh = f.hash) == MOVED) //当前hash桶有线程在对其扩容
advance = true; // already processed
else {
synchronized (f) { //给f加锁
// 判断下加锁的节点仍然是hash桶中的第一个节点,加锁的是第一个节点才算加锁成功
if (tabAt(tab, i) == f) {
Node<K,V> ln, hn;
if (fh >= 0) {
int runBit = fh & n; //记录当前hash值的第X(Math.pow(2,X)=n)位的值
Node<K,V> lastRun = f;
for (Node<K,V> p = f.next; p != null; p = p.next) {
int b = p.hash & n;
if (b != runBit) {
runBit = b;
lastRun = p;
}
}
if (runBit == 0) {
ln = lastRun;
hn = null;
}
else {
hn = lastRun;
ln = null;
}
for (Node<K,V> p = f; p != lastRun; p = p.next) {
int ph = p.hash; K pk = p.key; V pv = p.val;
if ((ph & n) == 0)
ln = new Node<K,V>(ph, pk, pv, ln);
else
hn = new Node<K,V>(ph, pk, pv, hn);
}
setTabAt(nextTab, i, ln); // 放在新table的hash桶中
setTabAt(nextTab, i + n, hn); // 放在新table的hash桶中
setTabAt(tab, i, fwd); // 把旧table的hash桶中放置转发节点,表明此hash桶已经被处理
advance = true;
}
// 红黑树的情况,先使用链表的方式遍历,复制所有节点,根据高低位
//组装成两个链表lo和hi,然后看下是否需要进行红黑树变换,最后放在新数组对应的hash桶中
else if (f instanceof TreeBin) {
TreeBin<K,V> t = (TreeBin<K,V>)f;
TreeNode<K,V> lo = null, loTail = null;
TreeNode<K,V> hi = null, hiTail = null;
int lc = 0, hc = 0;
for (Node<K,V> e = t.first; e != null; e = e.next) {
int h = e.hash;
TreeNode<K,V> p = new TreeNode<K,V>
(h, e.key, e.val, null, null);
//当前节点的hash值第X位为0
if ((h & n) == 0) {
if ((p.prev = loTail) == null)
lo = p;
else
loTail.next = p;
loTail = p;
++lc;
}
//当前节点的hash值第X位为1
else {
if ((p.prev = hiTail) == null)
hi = p;
else
hiTail.next = p;
hiTail = p;
++hc;
}
}
//如果lo的size(lc)小于6,则将lo转化为链表
//如果lo的size大于6且hi的size(hc)不等于0,重新构造红黑树,如果hi的size为0,则ln为原始红黑树
ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
(hc != 0) ? new TreeBin<K,V>(lo) : t;
//hn的设置桶ln相同
hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
(lc != 0) ? new TreeBin<K,V>(hi) : t;
setTabAt(nextTab, i, ln);
setTabAt(nextTab, i + n, hn);
setTabAt(tab, i, fwd);
advance = true;
}
}
}
}
}
}扩容代码
如下是一个链表扩容的示意图,第一张是一个hash桶中的一条链表,其中蓝色节点表示第X位为0,而红色表示第X位为1,扩容后旧table[i]的桶中为一个ForwardingNode节点,而新nextTab[i]和nextTable[i+n]的桶中分别为第二张和第三张图。
- Traverser只读遍历器:确切的说它不是方法,而是一个内部类。ConcurrentHashMap的多线程扩容增加了对ConcurrentHashMap遍历的困难。当遍历旧table时,如果遇到某个hash桶中为ForwardingNode节点,则遍历顺序参考基本类中ForwardingNode中的介绍。
static class Traverser<K,V> {
Node<K,V>[] tab; // current table; updated if resized 扩容完成后的旧数组
Node<K,V> next; // the next entry to use 扩容完成后的新数组
TableStack<K,V> stack, spare; //存储遍历到的 ForwardingNodes
int index; // index of bin to use next 下一个要读取的hash桶的下标
int baseIndex; // current index of initial table 起始下标
int baseLimit; // index bound for initial table 终止下标
final int baseSize; // initial table size tab数组长度 Traverser(Node<K,V>[] tab, int size, int index, int limit) {
this.tab = tab;
this.baseSize = size;
this.baseIndex = this.index = index;
this.baseLimit = limit;
this.next = null;
} /**
* Advances if possible, returning next valid node, or null if none.
* 遍历器指针移动到下一个有实际数据的节点,并返回该节点,如果结束则返回null
*/
final Node<K,V> advance() {
Node<K,V> e;
if ((e = next) != null)
e = e.next;
for (;;) {
Node<K,V>[] t; int i, n; // must use locals in checks
if (e != null)
return next = e; //节点非空则直接返回该节点
//达到边界条件直接返回null
if (baseIndex >= baseLimit || (t = tab) == null ||
(n = t.length) <= (i = index) || i < 0)
return next = null;
//处理特殊节点(ForwardingNode、TreeBin、ReservationNode)
if ((e = tabAt(t, i)) != null && e.hash < 0) {
if (e instanceof ForwardingNode) {
//遍历ForwardingNode的nextTable
tab = ((ForwardingNode<K,V>)e).nextTable;
e = null;
pushState(t, i, n); //将当前位置入栈
continue;
}
else if (e instanceof TreeBin)
e = ((TreeBin<K,V>)e).first;
else
e = null;
}
if (stack != null)
recoverState(n); //栈不为空,出栈
else if ((index = i + baseSize) >= n) //栈为空,遍历下一个hash桶
index = ++baseIndex; // visit upper slots if present
}
} /**
* Saves traversal state upon encountering a forwarding node.
* 入栈操作,保存当前对tab的遍历信息
*/
private void pushState(Node<K,V>[] t, int i, int n) {
TableStack<K,V> s = spare; // reuse if possible
if (s != null)
spare = s.next;
else
s = new TableStack<K,V>();
s.tab = t;
s.length = n;
s.index = i;
s.next = stack;
stack = s;
} /**
* Possibly pops traversal state.
* 参数n为当前tab数组的长度
* 可能会出栈,不出栈时,更改索引,准备遍历的是FN.nextTable中对应的第二个hash桶
*/
private void recoverState(int n) {
TableStack<K,V> s; int len;
while ((s = stack) != null && (index += (len = s.length)) >= n) {
n = len;
index = s.index;
tab = s.tab;
s.tab = null;
TableStack<K,V> next = s.next;
s.next = spare; // save for reuse
stack = next;
spare = s;
}
if (s == null && (index += baseSize) >= n)
index = ++baseIndex;
}
}Traverser
- containsValue(Object value):遍历ConcurrentHashMap看是否存在值为value的Node。
public boolean containsValue(Object value) {
if (value == null)
throw new NullPointerException();
Node<K,V>[] t;
if ((t = table) != null) {
Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
for (Node<K,V> p; (p = it.advance()) != null; ) {
V v;
if ((v = p.val) == value || (v != null && value.equals(v)))
return true;
}
}
return false;
}containsValue(Object value)
- containsKey(Object key):遍历ConcurrentHashMap看是否存在键为key的Node。
public boolean containsKey(Object key) {
return get(key) != null;
}
public V get(Object key) {
Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
int h = spread(key.hashCode());
if ((tab = table) != null && (n = tab.length) > 0 &&
(e = tabAt(tab, (n - 1) & h)) != null) {
if ((eh = e.hash) == h) {
if ((ek = e.key) == key || (ek != null && key.equals(ek)))
return e.val;
}
else if (eh < 0) //当hash值小于0时,说明当前节点为特殊节点,则以当前节点为根节点进行遍历,而不是遍历该节点的next节点
return (p = e.find(h, key)) != null ? p.val : null;
while ((e = e.next) != null) {
if (e.hash == h &&
((ek = e.key) == key || (ek != null && key.equals(ek))))
return e.val;
}
}
return null;
}containsKey(Object key)
- put(K key, V value):将该键值对插入ConcurrentHashMap中。
public V put(K key, V value) {
return putVal(key, value, false);
} final V putVal(K key, V value, boolean onlyIfAbsent) {
if (key == null || value == null) throw new NullPointerException(); //键或值存在null时直接抛出空指针异常
int hash = spread(key.hashCode());
int binCount = 0;
for (Node<K,V>[] tab = table;;) {
Node<K,V> f; int n, i, fh;
if (tab == null || (n = tab.length) == 0)
tab = initTable(); //初始化table
else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
if (casTabAt(tab, i, null,
new Node<K,V>(hash, key, value, null)))
break; // no lock when adding to empty bin
}
else if ((fh = f.hash) == MOVED)
tab = helpTransfer(tab, f); //发现转发节点,帮助扩容
else {
V oldVal = null;
synchronized (f) {
if (tabAt(tab, i) == f) {
if (fh >= 0) { //当前hash值大于0说明hash桶中为链表
binCount = 1;
for (Node<K,V> e = f;; ++binCount) {
K ek;
if (e.hash == hash &&
((ek = e.key) == key ||
(ek != null && key.equals(ek)))) {
oldVal = e.val; //如果当前键值对存在,则更新value为最新的value值
if (!onlyIfAbsent)
e.val = value;
break;
}
Node<K,V> pred = e;
if ((e = e.next) == null) {
pred.next = new Node<K,V>(hash, key,
value, null);
break;
}
}
}
else if (f instanceof TreeBin) { //hash桶值为红黑树
Node<K,V> p;
binCount = 2;
if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
value)) != null) {
oldVal = p.val;
if (!onlyIfAbsent)
p.val = value;
}
}
}
}
if (binCount != 0) {
//如果当前hash桶中的size大于8,将该链表转化为红黑树
if (binCount >= TREEIFY_THRESHOLD)
treeifyBin(tab, i);
if (oldVal != null)
return oldVal;
break;
}
}
}
addCount(1L, binCount); //计数值加1
return null;
}put(K key, V value)
- remove(Object key):删除键为key的Node。同样其中也包含了对replace(Object key, V value, Object cv)的介绍。
public V remove(Object key) {
return replaceNode(key, null, null);
}
final V replaceNode(Object key, V value, Object cv) {
int hash = spread(key.hashCode());
for (Node<K,V>[] tab = table;;) {
Node<K,V> f; int n, i, fh;
if (tab == null || (n = tab.length) == 0 ||
(f = tabAt(tab, i = (n - 1) & hash)) == null)
break; //当前要移除的key不在table中
else if ((fh = f.hash) == MOVED)
tab = helpTransfer(tab, f);
else {
V oldVal = null;
boolean validated = false;
synchronized (f) {
if (tabAt(tab, i) == f) {
if (fh >= 0) { //hash桶中为链表
validated = true;
for (Node<K,V> e = f, pred = null;;) {
K ek;
if (e.hash == hash &&
((ek = e.key) == key ||
(ek != null && key.equals(ek)))) {
V ev = e.val;
if (cv == null || cv == ev ||
(ev != null && cv.equals(ev))) {
oldVal = ev;
if (value != null) //如果当前value不为空,则更新value
e.val = value;
else if (pred != null) //value为空,则删除该节点
pred.next = e.next;
else
setTabAt(tab, i, e.next); //删除的是hash的第一个Node
}
break;
}
pred = e;
if ((e = e.next) == null)
break;
}
}
else if (f instanceof TreeBin) { //hash桶为红黑树
validated = true;
TreeBin<K,V> t = (TreeBin<K,V>)f;
TreeNode<K,V> r, p;
if ((r = t.root) != null &&
(p = r.findTreeNode(hash, key, null)) != null) {
V pv = p.val;
if (cv == null || cv == pv ||
(pv != null && cv.equals(pv))) {
oldVal = pv;
if (value != null)
p.val = value;
else if (t.removeTreeNode(p)) //处理退化为链表的情况
setTabAt(tab, i, untreeify(t.first));
}
}
}
}
}
//因为该方法可能是执行替换也可能是删除,如果是删除操作则计数值减1
if (validated) {
if (oldVal != null) {
if (value == null)
addCount(-1L, -1);
return oldVal;
}
break;
}
}
}
return null;
}remove(Object key)
至此ConcurrentHashMap的主要方法也就介绍完了,综合比较Hashtable和ConcurrentHashMap,两者都是线程安全的,但是Hashtable是表级锁,而ConcurrentHashMap是段级锁,锁住的单个Node,而且ConcurrentHashMap可以并发读取。对整张表进行迭代时,ConcurrentHashMap使用了不同于Hashtable的迭代方式,而是一种弱一致性的迭代器。
Hashtable、ConcurrentHashMap源码分析的更多相关文章
- ConcurrentHashMap源码分析(一)
本篇博客的目录: 前言 一:ConcurrentHashMap简介 二:ConcurrentHashMap的内部实现 三:总结 前言:HashMap很多人都熟悉吧,它是我们平时编程中高频率出现的一种集 ...
- 死磕 java集合之ConcurrentHashMap源码分析(三)
本章接着上两章,链接直达: 死磕 java集合之ConcurrentHashMap源码分析(一) 死磕 java集合之ConcurrentHashMap源码分析(二) 删除元素 删除元素跟添加元素一样 ...
- 并发-ConcurrentHashMap源码分析
ConcurrentHashMap 参考: http://www.cnblogs.com/chengxiao/p/6842045.html https://my.oschina.net/hosee/b ...
- ConcurrentHashMap 源码分析
ConcurrentHashMap 源码分析 1. 前言 终于到这个类了,其实在前面很过很多次这个类,因为这个类代码量比较大,并且涉及到并发的问题,还有一点就是这个代码有些真的晦涩,不好懂.前前 ...
- ConcurrentHashMap源码分析(1.8)
0.说明 1.ConcurrentHashMap跟HashMap,HashTable的对比 2.ConcurrentHashMap原理概览 3.ConcurrentHashMap几个重要概念 4.Co ...
- java基础系列之ConcurrentHashMap源码分析(基于jdk1.8)
1.前提 在阅读这篇博客之前,希望你对HashMap已经是有所理解的,否则可以参考这篇博客: jdk1.8源码分析-hashMap:另外你对java的cas操作也是有一定了解的,因为在这个类中大量使用 ...
- 死磕 java集合之ConcurrentHashMap源码分析(一)
开篇问题 (1)ConcurrentHashMap与HashMap的数据结构是否一样? (2)HashMap在多线程环境下何时会出现并发安全问题? (3)ConcurrentHashMap是怎么解决并 ...
- 多线程高并发编程(10) -- ConcurrentHashMap源码分析
一.背景 前文讲了HashMap的源码分析,从中可以看到下面的问题: HashMap的put/remove方法不是线程安全的,如果在多线程并发环境下,使用synchronized进行加锁,会导致效率低 ...
- [JUC-5]ConcurrentHashMap源码分析JDK8
在学习之前,最好先了解下如下知识: 1.ReentrantLock的实现和原理. 2.Synchronized的实现和原理. 3.硬件对并发支持的CAS操作及JVM中Unsafe对CAS的实现. 4. ...
随机推荐
- 检测Windows程序的内存和资源泄漏之原生语言环境
最近接连收到大客户的反馈,我们开发的一个软件,姑且称之为App-E吧,在项目规模特别大的情况下,长时间使用会逐渐耗尽内存,运行越来越缓慢,软件最终崩溃.由于App-E是使用混合语言开发的,主界面使用C ...
- Liniux系统下目录的权限意义
访问者及其基本权限 Linux系统内的文件访问者有三种身份,分别是: a) 文件和文件目录的所有者: u---User(所有权);b) 文件和文件目录的所有者所在的组的用户: g---Group;c) ...
- JS中new的自定义实现创建实例对象
我们都知道在JS中通常通过对象字面量和new关键字来创建对象,那么今天我就来给大家讲讲new是怎么创建实例对象的:首先创建一个构造函数: function Person(name,age){ this ...
- Tcl与Design Compiler (八)——DC的逻辑综合与优化
本文属于原创手打(有参考文献),如果有错,欢迎留言更正:此外,转载请标明出处 http://www.cnblogs.com/IClearner/ ,作者:IC_learner 对进行时序路径.工作环 ...
- 如何在Ubuntu_16_04下使用MySql的GR
一.前言 该文章主要是记录下从一个纯净的系统开始如何安装MySql 5.7.17 并且使用GR,以便于自己后期查看以及分享给他人. 二.安装mysql 因为默认ubuntu的源并不是最新的mysql所 ...
- org.springframework.beans.factory.BeanDefinitionStoreException异常
1.下面是我遇到的异常信息: 2017-03-25 18:01:11,322 [localhost-startStop-1][org.springframework.web.context.Conte ...
- 深入分析Java单例模式的各种方案
单例模式 Java内存模型的抽象示意图: 所有单例模式都有一个共性,那就是这个类没有自己的状态.也就是说无论这个类有多少个实例,都是一样的:然后除此者外更重要的是,这个类如果有两个或两个以上的实例的话 ...
- 老李推荐:第6章7节《MonkeyRunner源码剖析》Monkey原理分析-事件源-事件源概览-注入按键事件实例
老李推荐:第6章7节<MonkeyRunner源码剖析>Monkey原理分析-事件源-事件源概览-注入按键事件实例 poptest是国内唯一一家培养测试开发工程师的培训机构,以学员能胜 ...
- c++中的namespace(附程序运行图)
实验于华中农业大学逸夫楼2017.3.10 namespace中文意思是命名空间或者叫名字空间,传统的C++只有一个全局的namespace,但是由于现在的程序的规模越来越大,程序的分工越 来越细,全 ...
- Java 基础知识总结 2
11.Java常用类: StringBuffer StringBuffer 是使用缓冲区的,本身也是操作字符串的,但是与String类不同,String类的内容一旦声明之后则不可以改变,改变的只是其内 ...