如果对Rosenblatt感知器不了解,可以先查看下相关定义,然后对照下面的代码来理解。

代码中详细解释了各步骤的含义,有些涉及到了数学公式的解释。

这篇文章是以理解Rosenblatt感知器的原理为主,所以只实现了单层感知器,比较复杂的

多层的感知器会在后面写到。

下面是详细代码及说明:

'''
算法:Rosenblatt感知器=====>单层感知器
特性:提供快速的计算,能够实现逻辑计算中的NOT、OR、AND等简单计算
本质:在坐标轴轴里面存在一条直线(面)可以把数据分成两类
''' '''
变量约定:大写表示矩阵或数组,小写表示数字
X:表示数组或者矩阵
x:表示对应数组或矩阵的某个值
''' '''
关于学习效率(也叫步长:控制着第n次迭代中作用于权值向量的调节)(下面的参数a):
学习效率过大:收敛速度提高,稳定性降低,即出结果快,但是结果准确性较差
学习效率过小:稳定性提高,收敛速度降低,即出结果慢,准确性高,耗费资源
对于学习效率的确定,有专门的算法,这里不做研究。仅仅按照大多数情况下的选择:折中值
'''
import numpy as np
a=0.5 ##学习率 0<a<1
X=np.array([[1,1],[1,0],[0,0],[0,1]]) ##输入
D=np.array([1,1,0,1]) ##期望输出结果
W=np.array([0,0]) ##权重向量 ##硬限幅函数(即标准,这个比较简单:输入v大于0,返回1.小于等于0返回-1)
'''
最后的权重为W([1,1]),则:x+y=0 ==>y=-x
即:分类线方程为:y=-x()
'''
def sgn(v):
if v>0:
return 1
else:
return -1 ##激活函数(输出函数) '''
这里是两个向量相乘,对应的数学公式:
a(m,n)*b(p,q)=m*p+n*q
在下面的函数中,当循环中xn=1时(此时W=([1,1])):
np.dot(W.T,x)=(1,1)*(1,1)=1*1+1*1=2>0 ==>sgn 返回1
'''
def output(W,x):
return sgn(np.dot(W.T,x))##dot表示两个矩阵相乘 ##权重计算函数
'''
对应数学公式: w(n+1)=w(n)+a(d(n)-y(n))*x(n)
对应下列变量的解释:
w(n+1) <= neww 的返回值
w(n) <=oldw(旧的权重向量)
a <= a(学习率,范围:0<a<1)
d(n) <= d(期望输出值)
y(n) <= output的返回值(实际输出值)
x(n) <= x(输入值)
'''
def neww(oldW,d,x,a):
return oldW+a*(d-output(oldW,x))*x ##修正权值
'''
此循环的原理:
权值修正原理(单样本)==>神经网络每次读入一个样本,进行修正,
样本读取完毕,修正过程结束 '''
i=0
for xn in X:
W=neww(W,D[i],xn,a)
i+=1 print("最后的权值:",W.T) ##输出结果
print("开始验证结果...")
for xn in X:
print("D%s and W%s =>%d"%(xn,W.T,output(W,xn))) ##测试准确性:
'''
由上面的说明可知:分类线方程为y=-x,从坐标轴上可以看出:
(2,3)属于+1分类,(-2,-1)属于-1分类
'''
print("开始测试...")
test=np.array([2,3])
print("D%s and W%s =>%d"%(test,W.T,output(W,test)))
test=np.array([-2,-1])
print("D%s and W%s =>%d"%(test,W.T,output(W,test)))

输出结果:

>>>
最后的权值: [ 1. 1.]
开始验证结果...
D[1 1] and W[ 1. 1.] =>1
D[1 0] and W[ 1. 1.] =>1
D[0 0] and W[ 1. 1.] =>-1
D[0 1] and W[ 1. 1.] =>1
开始测试...
D[2 3] and W[ 1. 1.] =>1
D[-2 -1] and W[ 1. 1.] =>-1
>>>

机器学习:Python实现单层Rosenblatt感知器的更多相关文章

  1. 神经网络与机器学习第3版学习笔记-第1章 Rosenblatt感知器

    神经网络与机器学习第3版学习笔记 -初学者的笔记,记录花时间思考的各种疑惑 本文主要阐述该书在数学推导上一笔带过的地方.参考学习,在流畅理解书本内容的同时,还能温顾学过的数学知识,达到事半功倍的效果. ...

  2. 神经网络与机器学习 笔记—Rosenblatt感知器收敛算法C++实现

    Rosenblatt感知器收敛算法C++实现 算法概述 自己用C++实现了下,测试的例子和模式用的都是双月分类模型,关于双月分类相关看之前的那个笔记: https://blog.csdn.net/u0 ...

  3. Rosenblatt感知器

    一.定义 Rosenblatt感知器建立在一个线性神经元之上,神经元模型的求和节点计算作用于突触输入的线性组合,同时结合外部作用的偏置,对若干个突触的输入项求和后进行调节. 二.基本计算过程 Rose ...

  4. Coursera机器学习基石 第2讲:感知器

    第一讲中我们学习了一个机器学习系统的完整框架,包含以下3部分:训练集.假设集.学习算法 一个机器学习系统的工作原理是:学习算法根据训练集,从假设集合H中选择一个最好的假设g,使得g与目标函数f尽可能低 ...

  5. 神经网络与机器学习 笔记—多层感知器(MLP)

    多层感知器(MLP) Rosenblatt感知器和LMS算法,都是单层的并且是单个神经元构造的神经网络,他们的局限性是只能解决线性可分问题,例如Rosenblatt感知器一直没办法处理简单异或问题.然 ...

  6. 机器学习:Python实现最小均方算法(lms)

    lms算法跟Rosenblatt感知器相比,主要区别就是权值修正方法不一样.lms采用的是批量修正算法,Rosenblatt感知器使用的 是单样本修正算法.两种算法都是单层感知器,也只适用于线性可分的 ...

  7. python机器学习——感知器

    最近在看机器学习相关的书籍,顺便把每天阅读的部分写出来和大家分享,共同学习探讨一起进步!作为机器学习的第一篇博客,我准备从感知器开始,之后会慢慢更新其他内容. 在实现感知器算法前,我们需要先了解一下神 ...

  8. 机器学习之感知器算法原理和Python实现

    (1)感知器模型 感知器模型包含多个输入节点:X0-Xn,权重矩阵W0-Wn(其中X0和W0代表的偏置因子,一般X0=1,图中X0处应该是Xn)一个输出节点O,激活函数是sign函数. (2)感知器学 ...

  9. 机器学习 —— 基础整理(六)线性判别函数:感知器、松弛算法、Ho-Kashyap算法

    这篇总结继续复习分类问题.本文简单整理了以下内容: (一)线性判别函数与广义线性判别函数 (二)感知器 (三)松弛算法 (四)Ho-Kashyap算法 闲话:本篇是本系列[机器学习基础整理]在time ...

随机推荐

  1. static的加载先后顺序

    1.静态变量的声明和赋值是分开的,静态变量会先被声明,赋值操做被放在了静态代码块中. 2.静态变量的赋值和静态代码块的执行顺序和代码的先后书写顺序相关. 3.静态代码块优先执行,其次构造方法,最后普通 ...

  2. C# 添加、获取及删除PDF附件

    C# 添加.获取及删除PDF附件 前言 附件在PDF文档中很常见,这些附件可以是PDF或其他类型的文件.在PDF中,附件有两种存在方式,一种是普通的文件附件(document-level file a ...

  3. wpf后置代码中的Grid布局以及图片路径的设置

    之前用Grid练习连连看布局时,遇到了几个困惑.此次就把当时的一些收获写出来,供以后翻看. 图片路径可能比较常用,所以就写在第一个了. 在xaml中,设置图片非常简单,只要把图片拷贝到资源目录(这里假 ...

  4. 从C#到TypeScript - Generator

    总目录 从C#到TypeScript - 类型 从C#到TypeScript - 高级类型 从C#到TypeScript - 变量 从C#到TypeScript - 接口 从C#到TypeScript ...

  5. js设计模式--工厂模式

    工厂模式: 工厂模式的目的是为了创建对象,它经常是在类和类的方法中实现.简单的工厂模式是由一个方法来决定到底要创建哪类的实例,这些实例经常拥有相同的接口,这种模式在所实例化的类型在编译期并不确定,而是 ...

  6. Redis实战与 Session缓存

    C#操作Redis的库有很多,比如C# Redis Client就很好用, 在NuGet上搜索 ServiceStack.Redis  安装到项目中,将会添加以下引用 ServiceStack.Red ...

  7. git如何解决冲突(代码托管在coding)

    分支A提交合并请求到分支B,有冲突 git fetch code 拉取远程仓库的其他分支代码(我拉代码是remote add code所以这里是code,可以用git remote查看) git ch ...

  8. Androidstudio项目分享到Git@OSC托管

    Androidstudio项目分享到Git@OSC托管. 一.在OSC创建仓库 例如,创建一个AndroidStudy仓库,创建步骤如下: 输入仓库名称 点击创建按钮,就可以完成仓库的创建,如下图所示 ...

  9. ADO.net参数化查询陷阱

    避免SQL漏洞注入攻击,往往采用的是参数化查询!然而在使用参数化查询中,往往为了方便就直接通过构造方法来进行数据的初始化了,然而这样就引发一个这样的问题,当参数值为0时,就出现参数为空的情况了. 一. ...

  10. 未来工厂——电器行业ERP案例

    江苏科兴电器有限公司位于全国著名的“银杏之乡”泰兴市南首,主要生产35kV及以下电流.电压互感器等系列产品.产品多次经国家及省市技术监督部门抽检合格,广泛应用于国家重点工程.“COSINE”商标荣获泰 ...