CPP,MATLAB实现牛顿插值
牛顿插值法的原理,在维基百科上不太全面,具体可以参考这篇文章。同样贴出,楼主作为初学者认为好理解的代码。
function p=Newton1(x1,y,x2)
%p为多项式估计出的插值
syms x
n = length(x1);
%差商的求法 for i=2:n
f1(i,1)=(y(i)-y(i-1))/(x1(i)-x1(i-1));
end for i=2:n
for j=i+1:n
f1(j,i)=(f1(j,i-1)-f1(j-1,i-1))/(x1(j)-x1(j-i));
end
end
f1=[y',f1]% 输出带0阶差商的差商表格 %Newton插值函数
Newton=f1(1,1);
for i=2:n
tt=1;
for j=1:i-1
tt=tt*(x-x1(j));
end
Newton=Newton+f1(i,i)*tt;
end
fprintf('Newton插值函数为\n')
expand(Newton) % 将连乘多项式合并展开
x = x2;
p = eval(Newton); % 代入值计算
fprintf('Newton插值函数在所求点x2的函数值为\n')
p
运行:
输出:
CPP实现代码如下:
注意此处求差商运用的是另外一种方法
#include<iostream>
#include<string>
#include<vector>
using namespace std; // 函数声明,使得其在被完整定义之前可以被引用
double ChaShang(int n, vector<double>&X, vector<double>&Y);
double Newton(double x, vector<double>&X, vector<double>&Y); int main(){
int n;
cout<<"输入插值点的个数:"<<endl;
cin>>n;
// 先将X,Y填充为n个0
vector<double>X(n,0);
vector<double>Y(n,0);
cout<<"请输入X[i],Y[i]:"<<endl;
for(int i=0;i<n;i++){
cin>>X[i]>>Y[i];
}
double x;
cout<<"请输入要进行插值的点的x值:"<<endl;
cin>>x;
cout<<Newton(x,X,Y)<<endl;
return 0;
} // 此处为差商的另一种求法,可有差商定义根据数学归纳法求出
double ChaShang(int n,vector<double>&X,vector<double>&Y){
double f=0;
double temp=0;
for(int i=0;i<n+1;i++){
temp=Y[i];
for(int j=0;j<n+1;j++){
if(i!=j){temp /= (X[i]-X[j]);}
}
f += temp;
}return f; } double Newton(double x,vector<double>&X,vector<double>&Y){
double result=0;
for(int i=0;i<X.size();i++){
//此处的temp用于生成牛顿插值多项式里面的多项式乘积因子,(x-1)(x+3)这些
double temp=1;
double f=ChaShang(i,X,Y);
for(int j=0;j<i;j++){
temp=temp*(x-X[j]);
}
// 差商乘以因子得到最终的牛顿插值多项式
result += f*temp;
}return result;
}
运行结果:
CPP,MATLAB实现牛顿插值的更多相关文章
- 多项式函数插值:全域多项式插值(一)单项式基插值、拉格朗日插值、牛顿插值 [MATLAB]
全域多项式插值指的是在整个插值区域内形成一个多项式函数作为插值函数.关于多项式插值的基本知识,见“计算基本理论”. 在单项式基插值和牛顿插值形成的表达式中,求该表达式在某一点处的值使用的Horner嵌 ...
- Matlab随笔之插值与拟合(上)
原文:Matlab随笔之插值与拟合(上) 1.拉格朗日插值 新建如下函数: function y=lagrange(x0,y0,x) %拉格朗日插值函数 %n 个节点数据以数组 x0, y0 输入(注 ...
- Matlab随笔之插值与拟合(下)
原文:Matlab随笔之插值与拟合(下) 1.二维插值之插值节点为网格节点 已知m x n个节点:(xi,yj,zij)(i=1…m,j=1…n),且xi,yi递增.求(x,y)处的插值z. Matl ...
- 拉格朗日插值和牛顿插值 matlab
1. 已知函数在下列各点的值为 0.2 0.4 0.6 0.8 1.0 0.98 0.92 0.81 0.64 0.38 用插值法对数据进行拟合,要求给出Lagrange插值多项式和Newto ...
- CPP&MATLAB实现拉格朗日插值法
开始学习MATLAB(R和Python先放一放...),老师推荐一本书,看完基础就是各种算法...首先是各种插值.先说拉格朗日插值法,这原理楼主完全不懂的,查的维基百科,好久才看懂.那里讲的很详细,这 ...
- Matlab曲面拟合和插值
插值和拟合都是数据优化的一种方法,当实验数据不够多时常常须要用到这样的方法来绘图. 在matlab中都有特定的函数来完毕这些功能. 这两种方法的确别在于: 当測量值是准确的,没有误差时,一般用插值: ...
- matlab二维插值--interp2与griddata
二者均是常用的二维插值方法,两者的区别是, interp2的插值数据必须是矩形域(X,Y必须分别是单调向量),即已知数据点(x,y)组成规则的矩阵,或称之为栅格,可使用meshgid生成. gridd ...
- [Python] 牛顿插值
插值公式为: 差商递归公式为: # -*- coding: utf-8 -*- #Program 0.4 Newton Interpolation import numpy as np import ...
- 【matlab】 拉格朗日插值
第一个函数 "lagrange1.m" 输入:X Y 与点x0 输出:插值函数对应函数值 y0 function y = lagrange1(X,Y,x0) n = length ...
随机推荐
- Qt之线程基础
何为线程 线程与并行处理任务息息相关,就像进程一样.那么,线程与进程有什么区别呢?当你在电子表格上进行数据计算的时候,在相同的桌面上可能有一个播放器正在播放你最喜欢的歌曲.这是一个两个进程并行工作的例 ...
- 笔记7:winfrom的一些知识点(一)
一.MDI窗体 private void 添加窗体ToolStripMenuItem_Click(object sender, EventArgs e) { Form2 frm1 = new Form ...
- hdu-----(1507)Uncle Tom's Inherited Land*(二分匹配)
Uncle Tom's Inherited Land* Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (J ...
- C++格式化输入输出
要实现格式化输入输出,程序需要包含 iostreams 标准标头 <iomanip> 以定义几个各自采用单个参数的操控器. 备注: 其中每个操控器都返回重载 basic_istream&l ...
- JQuery时间轴timeline插件的学习-Lateral On-Scroll Sliding with jQuery+technotarek / timeliner
一.Lateral On-Scroll Sliding with jQuery的使用 View demo Download source 1. HTML结构 <div id=" ...
- noip知识点总结之--欧几里得算法和扩展欧几里得算法
一.欧几里得算法 名字非常高大上的不一定难,比如欧几里得算法...其实就是求两个正整数a, b的最大公约数(即gcd),亦称辗转相除法 需要先知道一个定理: gcd(a, b) = gcd(b, a ...
- http://ecgui.com/?hg=0&nr=0
eCGUI- 微型嵌入式GUI体积小巧 大小在 100KB~180KB! 特性: 多窗口支持| 完全中文输入/显示| 多数常用GUI控件| 99.9% ANSI C 编写| 已成功移植 DOS,Lin ...
- js刷新页面和跳转
javascript返回上一页: 1.返回上一页 history.go(-1); 返回上两个页面 history.go(-2); <a href="javascript:history ...
- C#学习笔记思维导图 一本书22张图
阅读的书是<21天学通C#>博客中有下载 看看总结之后的模块 全部文件 初步展示 数据存储 继承模块 暂时就这些吧 全部思维导图22张打包下载
- 存储过程Oracle学习(一)
一.简介 存储过程:就是在数据库中创建的一段程序,供别人调用 .其实我感觉跟定义一个方法相似 二.无参存储过程 如下,经典的输出"Hello World"来入门存储过程 创建一个存 ...