Magic Bracelet
Time Limit: 2000MS   Memory Limit: 131072K
Total Submissions: 3731   Accepted: 1227

Description

Ginny’s birthday is coming soon. Harry Potter is preparing a birthday present for his new girlfriend. The present is a magic bracelet which consists of n magic beads. The are m kinds of different magic beads. Each kind of beads has its unique characteristic. Stringing many beads together a beautiful circular magic bracelet will be made. As Harry Potter’s friend Hermione has pointed out, beads of certain pairs of kinds will interact with each other and explode, Harry Potter must be very careful to make sure that beads of these pairs are not stringed next to each other.

There infinite beads of each kind. How many different bracelets can Harry make if repetitions produced by rotation around the center of the bracelet are neglected? Find the answer taken modulo 9973.

Input

The first line of the input contains the number of test cases.

Each test cases starts with a line containing three integers n (1 ≤ n ≤ 109gcd(n, 9973) = 1), m (1 ≤ m ≤ 10), k (1 ≤ k ≤ m(m − 1) ⁄ 2). The next k lines each contain two integers a and b(1 ≤ ab ≤ m), indicating beads of kind a cannot be stringed to beads of kind b.

Output

Output the answer of each test case on a separate line.

Sample Input

4
3 2 0
3 2 1
1 2
3 2 2
1 1
1 2
3 2 3
1 1
1 2
2 2

Sample Output

4
2
1
0

Source

 
 
很好的一道题目。
做了这题才感觉对Burnside引理和polya定理有点深入了解。
 
 
还不清楚的可以看看上面的链接,解释的很清楚。
 
关于这题,给个解释的很清楚的http://hi.baidu.com/billdu/item/62319f2554c7cac9a5275a0d
 
讲得很清晰
 
#include <stdio.h>
#include <algorithm>
#include <string.h>
#include <iostream>
using namespace std;
const int MOD = ;
//矩阵
struct Matrix
{
int mat[][];
int n,m;
Matrix(){}
Matrix(int _n,int _m)
{
n = _n; m = _m;
for(int i = ;i < n;i++)
for(int j = ;j < m;j++)
mat[i][j] = ;
}
Matrix operator *(const Matrix &b)const
{
Matrix ret = Matrix(n,b.m);
for(int i = ;i < ret.n;i++)
for(int j = ;j < ret.m;j++)
{
for(int k = ;k < m;k++)
{
ret.mat[i][j] += mat[i][k]*b.mat[k][j];
ret.mat[i][j] %= MOD;
}
}
return ret;
}
Matrix operator ^(int b)const
{
Matrix ret = Matrix(n,m),tmp = Matrix(n,m);
for(int i = ;i < n;i++)
{
for(int j = ;j < m;j++)
tmp.mat[i][j] = mat[i][j];
ret.mat[i][i] = ;
}
while(b)
{
if(b&)ret = ret*tmp;
tmp = tmp*tmp;
b >>= ;
}
return ret;
}
};
//求欧拉函数
long long eular(long long n)
{
long long ans = n;
for(int i = ;i*i <= n;i++)
{
if(n % i == )
{
ans -= ans/i;
while(n % i == )
n /= i;
}
}
if(n > )ans -= ans/n;
return ans;
}
//快速幂,用来求逆元
long long pow_m(long long a,long long n,long long mod)
{
long long ret = ;
long long tmp = a%mod;
while(n)
{
if(n&)
{
ret *= tmp;
ret %= mod;
}
tmp *= tmp;
tmp %= mod;
n>>=;
}
return ret;
}
//利用欧拉定理求逆元
long long inv(long long x,long long mod)//mod为素数
{
return pow_m(x,mod-,mod);
} Matrix A,B;
int n,m;
//求x个元素对应的f
int NoChange(int x)
{
B = A^x;
int ans = ;
for(int i = ; i < m;i++)
{
ans += B.mat[i][i];
ans %= MOD;
}
return ans;
}
int solve()
{
int ans = ;
for(int i = ;i*i <= n;i++)
if(n % i == )
{
ans = ans + eular(i)*NoChange(n/i)%MOD;
ans %= MOD;
if(n/i != i)
{
ans = ans + eular(n/i)*NoChange(i)%MOD;
ans %= MOD;
}
}
ans *= inv(n,MOD);
return ans%MOD;
}
int main()
{
int T;
int k;
int u,v;
scanf("%d",&T);
while(T--)
{
scanf("%d%d%d",&n,&m,&k);
A = Matrix(m,m);
for(int i = ;i < m;i++)
for(int j = ;j < m;j++)
A.mat[i][j] = ;
while(k--)
{
scanf("%d%d",&u,&v);
u--;
v--;
A.mat[u][v] = A.mat[v][u] = ;
}
printf("%d\n",solve());
}
return ;
}

POJ 2888 Magic Bracelet(Burnside引理,矩阵优化)的更多相关文章

  1. POJ 2888 Magic Bracelet ——Burnside引理

    [题目分析] 同样是Burnside引理.但是有几种颜色是不能放在一起的. 所以DP就好了. 然后T掉 所以矩阵乘法就好了. 然后T掉 所以取模取的少一些,矩阵乘法里的取模尤其要注意,就可以了. A掉 ...

  2. POJ-2888 Magic Bracelet(Burnside引理+矩阵优化+欧拉函数+逆元)

    Burnside引理经典好题呀! 题解参考 https://blog.csdn.net/maxwei_wzj/article/details/73024349#commentBox 这位大佬的. 这题 ...

  3. poj 2888 Magic Bracelet(Polya+矩阵快速幂)

    Magic Bracelet Time Limit: 2000MS   Memory Limit: 131072K Total Submissions: 4990   Accepted: 1610 D ...

  4. 【POJ2888】Magic Bracelet Burnside引理+欧拉函数+矩阵乘法

    [POJ2888]Magic Bracelet 题意:一个长度为n的项链,有m种颜色的珠子,有k个限制(a,b)表示颜色为a的珠子和颜色为b的珠子不能相邻,求用m种珠子能串成的项链有多少种.如果一个项 ...

  5. poj 2888 Magic Bracelet

    经典的有限制条件的Burnside计数+矩阵乘法!!! 对于这种限制条件的情况我们可以通过矩阵连乘得到,先初始化矩阵array[i][j]为1.如果颜色a和颜色b不能涂在相邻的珠子, 那么array[ ...

  6. 解题:POJ 2888 Magic Bracelet

    题面 这题虽然很老了但是挺好的 仍然套Burnside引理(因为有限制你并不能套Polya定理),思路和这个题一样,问题主要是如何求方案. 思路是把放珠子的方案看成一张图,然后就巧妙的变成了一个经典的 ...

  7. POJ 2888 Magic Bracelet(burnside引理+矩阵)

    题意:一个长度为n的项链,m种颜色染色每个珠子.一些限制给出有些颜色珠子不能相邻.旋转后相同视为相同.有多少种不同的项链? 思路:这题有点综合,首先,我们对于每个n的因数i,都考虑这个因数i下的不变置 ...

  8. [POJ 2888]Magic Bracelet[Polya Burnside 置换 矩阵]

    也许更好的阅读体验 \(\mathcal{Description}\) 大意:给一条长度为\(n\)的项链,有\(m\)种颜色,另有\(k\)条限制,每条限制为不允许\(x,y\)颜色连在一起.要求有 ...

  9. POJ 2888 Magic Bracelet [Polya 矩阵乘法]

    传送门 题意:竟然扯到哈利波特了.... 和上一题差不多,但颜色数很少,给出不能相邻的颜色对 可以相邻的连边建图矩阵乘法求回路个数就得到$f(i)$了.... 感觉这样的环上有限制问题挺套路的...旋 ...

随机推荐

  1. linux 多处理器概念

    Linux 提出了 Multi-Processing 的概念,它的调度器可以将操作系统的线程均分到各个核(或硬件线程)上去执行,以此达到并行计算的目的,从而也可以极大地提高系统的性能. 实现计数器 1 ...

  2. Git server安装和配置

    yum install git yum install git-dameon toiseGit

  3. 事务&视图和索引

    一:事务 1.含义:事务是一个不可分割的整体,事务中的多个执行过程,同生共死.要么都执行成功,要么都执行失败. 事务必须具备以下四个属性,(简称:ACID): ①.原子性(Atomicity):事务的 ...

  4. UVa 1479 (Treap 名次树) Graph and Queries

    这题写起来真累.. 名次树就是多了一个附加信息记录以该节点为根的树的总结点的个数,由于BST的性质再根据这个附加信息,我们可以很容易找到这棵树中第k大的值是多少. 所以在这道题中用一棵名次树来维护一个 ...

  5. UVa 10891 (博弈+DP) Game of Sum

    最开始的时候思路就想错了,就不说错误的思路了. 因为这n个数的总和是一定的,所以在取数的时候不是让自己尽可能拿的最多,而是让对方尽量取得最少. 记忆化搜索(时间复杂度O(n3)): d(i, j)表示 ...

  6. BZOJ 3406 乳草的入侵

    BFS. #include<iostream> #include<cstdio> #include<cstring> #include<algorithm&g ...

  7. python练习程序(c100经典例12)

    题目: 判断101-200之间有多少个素数,并输出所有素数. for i in range(101,201): flag=0; for j in range(2,int(i**(1.0/2))): i ...

  8. gridview自定义表头

    gridview为我们提供了丰富的接口,用于满足自定义需求. 通常asp:gridview会根据绑定的列Columns自动生成表头,展现在前台元素. 序号 类别 有时候需要复杂一些的表头. 序号 类别 ...

  9. Maven加依赖包

    对于初学maven的人来说刚开始会有个困惑,那就是怎么知道依赖的jar的groupId和atrifactId是什么, 比如要依赖mybatis,会在pom.xml中配置如下: <dependen ...

  10. HDU 5137 How Many Maos Does the Guanxi Worth

    How Many Maos Does the Guanxi Worth Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 512000/5120 ...