Middlebury立体匹配源码总结

优化方法

图像可否预处理

代价计算可否采用BT方式

可选代价计算方法

可否代价聚合

可否MinFilter优化原始代价

WTA-Box

可以

可以

AD/SD

可以,聚合尺寸可变,迭代次数1次

可以

WTA-Binomial

可以

可以

AD/SD

可以,聚合尺寸固定,迭代次数可变

不可以

WTA-Diffusion

可以

可以

AD/SD

可以,聚合尺寸固定,迭代次数可变

不可以

WTA-membrane

可以

可以

AD/SD

可以,聚合尺寸固定,迭代次数可变

不可以

WTA-Bayesian

可以

可以

AD/SD

可以,聚合尺寸固定,迭代次数可变

不可以

WTA-LASW

可以

可以

AD/SD

可以,聚合尺寸可变,迭代次数1次

不可以

SO

可以

可以

AD/SD

不可以

不可以

DP

可以

可以

AD/SD

不可以

不可以

GC

可以

可以

AD/SD

不可以

不可以

SA

可以

可以

AD/SD

不可以

不可以

BPAccel

可以

可以

AD/SD

不可以

不可以

BPSync

可以

可以

AD/SD

不可以

不可以

1. 主线函数

1.0 ComputeCorrespondence

     void ComputeCorrespondence()
     {
         CShape sh = m_frame[frame_ref].input_image.Shape();
         //1.计算m_frame_xxx, m_disp_xxx, disp_step, disp_n, m_match_outside
         //只考虑disp_step==1的情况,所以可进行以下简化
         //且后文件将除m_disp_n外的所有m_frame_xxx和m_disp_xxx都去掉
         m_frame_diff = ;// frame_match - frame_ref;
         m_frame_diff_sign = ;// (m_frame_diff > 0) ? 1 : -1;
         m_disp_num = ;// disp_step < 1.0f ? 1 : ROUND(disp_step);
         m_disp_den = ;// disp_step < 1.0f ? ROUND(1.0 / disp_step) : 1;
         m_disp_step_inv = ;// m_disp_den / (float)m_disp_num;
         m_disp_step = disp_step;// m_disp_num / (float)m_disp_den;
         m_disp_n = disp_n = disp_max-disp_min + ;// int(m_disp_step_inv * (disp_max - disp_min)) + 1;
         //disp_step = m_disp_step;
         //disp_n = m_disp_n;
         // Special value for border matches
          *  : );
         int cutoff = (match_fn == eSD) ? match_max * match_max : abs(match_max);
         m_match_outside = __min(worst_match, cutoff);    // trim to cutoff

         //2.设置左右图像
         m_reference.ReAllocate(sh);
         CopyPixels(m_frame[frame_ref].input_image, m_reference);
         m_matching.ReAllocate(sh);
         CopyPixels(m_frame[frame_match].input_image, m_matching);

         //3.设置标准视差图像
         sh.nBands = ;
         m_true_disparity.ReAllocate(sh);   // ground truth
         ScaleAndOffset(m_frame[frame_ref].truth_image, m_true_disparity, 1.0f / disp_scale, disp_min);

         //4.生成浮点视差图像
         sh.nBands = ;
         m_float_disparity.ReAllocate(sh);
         m_float_disparity.ClearPixels();

         //5.生成整型视差图像
         sh.nBands = ;
         m_disparity.ReAllocate(sh);        // winning disparities

         //6.生成代价函数图像
         sh.nBands = m_disp_n;// number of disparity levels
         m_cost.ReAllocate(sh);             // raw matching costs (# bands = # disparities)

         //if (evaluate_only){暂且略去}
         //7.执行算法
         clock_t time0 = clock();
         PreProcess();   // see StcPreProcess.cpp
         RawCosts();     // see StcRawCosts.cpp
         Aggregate();    // see StcAggregate.cpp
         Optimize();     // see StcOptimize.cpp
         Refine();       // see StcRefine.cpp
         clock_t time1 = clock();    // record end time
         total_time = (float)(time1 - time0) / (float)CLOCKS_PER_SEC;

         //8.生成并设置深度图像
         sh.nBands = ;
         m_frame[frame_ref].depth_image.ReAllocate(sh);
         m_frame[frame_ref].depth_image.ClearPixels();      // set to 0 if we just reallocated
         ScaleAndOffset(m_float_disparity, m_frame[frame_ref].depth_image, disp_scale, -disp_min * disp_scale + 0.5);

         //9.
         CopyPixels(m_frame[frame_ref].input_image, m_reference);
     }

1.1 PreProcess

     void PreProcess()
     {
         ; iter < preproc_blur_iter; iter++)
         {
             ConvolveSeparable(m_reference, m_reference, ConvolveKernel_121, ConvolveKernel_14641, , );
             ConvolveSeparable(m_matching, m_matching, ConvolveKernel_121, ConvolveKernel_14641, , );
         }
         //Currently, we only support iterated binomial blur, to clean up the images a little.
         //This should help sub-pixel fitting work better, by making image shifts closer to a Taylor series expansion,
         //but will result in worse performance near discontinuity regions and in finely textured regions.
         //Other potential pre-processing operations (currently not implemented),might include:
         //(1)bias and gain normalization
         //(2)histogram equalization (global or local)
         //(3)rank statistics pre-processing
     }

1.2 RawCosts

     void RawCosts()
     {
         CShape sh = m_reference.Shape();
         int cols = sh.width;
         int rows = sh.height;
         int cn = sh.nBands;
         fprintf(stderr, match_fn == eAD ? "\nmatch_fn=AD, match_max=%d\n" : (match_fn == eSD ? "\nmatch_fn=SD, match_max=%d\n" : "\nmatch_fn=unknown, match_max=%d\n"), match_max);

         int cutoff = (match_fn == eSD) ? match_max * match_max : abs(match_max);
         ; d < disp_n; d++)
         {
             int disp = -(disp_min + d);//计算取不同视差值的代价(一个视差值对应一个cost的通道)
             ; i < rows; i++)
             {
                 uchar *, i, );
                 uchar *match = &m_matching.Pixel(, i, );
                 , i, d);
                 , jj = ; j < cols; j++, jj += disp_n)//m_cost的通道数为disp_n
                 {
                     //1.肯定为错误匹配则代价无穷大
                     )
                     {
                         cost[jj] = m_match_outside;
                         continue;
                     }

                     //2.否则计算AD代价或SD代价
                     ;//多通道则是所有通道代价之和
                     uchar *pixel0 = &ref[j*cn];
                     uchar *pixel1 = &match[(j + disp)*cn];
                     ; k < cn; k++)
                     {
                         int diff1 = (int)pixel1[k] - (int)pixel0[k];
                         int diff2 = (match_fn == eSD) ? diff1 * diff1 : abs(diff1);
                         diff_sum = diff_sum + diff2;
                     }
                     cost[jj] = __min(diff_sum, cutoff);
                 }
             }
         }
     }

1.2.1 PadCosts

     void PadCosts()
     {    // fill the outside parts of the DSI
         CShape sh = m_cost.Shape();
         int cols = sh.width;
         int rows = sh.height;

         ; d < m_disp_n; d++)
         {
             int disp = -(disp_min + d);
             ; i < rows; i++)
             {
                 , i, d);
                 , jj = ; j < cols; j++, jj += disp_n)//m_cost的通道数为disp_n
                     cost[jj] = ((j + disp) < ) ? m_match_outside : cost[jj];
             }
         }
     }

1.3 Aggregate

 void Aggregate()
     {
         // Save the raw matching costs in m_cost0;
         CopyPixels(m_cost, m_cost0);

         //1.Perform given number of iteration steps
         ; iter < aggr_iter; iter++)
             switch (aggr_fn)
             {
                 case eBox:
                     ) fprintf(stderr, ", box=%d", aggr_window_size);
                     BoxFilter(m_cost, m_cost, aggr_window_size, aggr_window_size, true);//可以用cv::boxFilter()代替
                     break;

                 case eASWeight:
                     ) fprintf(stderr, ", AdaptiveWeight (box=%d gamma_p=%g gamma_s=%g color_space=%d )", aggr_window_size, aggr_gamma_proximity, aggr_gamma_similarity, aggr_color_space);
                     LASW(m_cost,        // initial matching cost
                         m_cost,            // aggregated matching cost
                         m_reference,        // reference image
                         m_matching,        // target image
                         aggr_window_size,    // window size - x
                         aggr_window_size,    // window size - y
                         aggr_gamma_proximity,    // gamma_p
                         aggr_gamma_similarity,    // gamma_c
                         aggr_color_space,    // color space
                         aggr_iter            // iteration number (aggregation)
                         );
                     iter = aggr_iter;
                     break;

                 default:
                     throw CError("CStereoMatcher::Aggregate(): unknown aggregation function");
             }

         //2.Simulate the effect of shiftable windows
         )    MinFilter(m_cost, m_cost, aggr_minfilter, aggr_minfilter);

         //3.Pad the outside costs back up to bad values
         PadCosts();
     }

1.3.1 MinFilter

     {
         //略
     }

1.4 Optimize

 void Optimize()
     {
         // Select the best matches using local or global optimization

         // set up the smoothness cost function for the methods that need it
         if (opt_fn == eDynamicProg || opt_fn == eScanlineOpt || opt_fn == eGraphCut || opt_fn == eSimulAnnl || opt_fn == eBPAccel || opt_fn == eBPSync)
         {
             if (verbose == eVerboseSummary) fprintf(stderr, ", smooth=%g, grad_thres=%g, penalty=%g", opt_smoothness, opt_grad_thresh, opt_grad_penalty);
             SmoothCostAll();
         }

         switch (opt_fn)
         {
         case eNoOpt:      // no optimization (pass through input depth maps)
             if (verbose == eVerboseSummary)  fprintf(stderr, ", NO OPT");
             break;

         case eWTA:        // winner-take-all (local minimum)
             if (verbose == eVerboseSummary) fprintf(stderr, ", WTA");
             OptWTA();
             break;

         case eGraphCut:     // graph-cut global minimization
             if (verbose == eVerboseSummary)   fprintf(stderr, ", GC");
             OptWTA();       // get an initial labelling (or just set to 0???)
             OptGraphCut();  // run the optimization
             break;

         case eDynamicProg:  // scanline dynamic programming
             if (verbose == eVerboseSummary)    fprintf(stderr, ", DP (occl_cost=%d)", opt_occlusion_cost);
             OptDP();        // see StcOptDP.cpp
             break;

         case eScanlineOpt:  // scanline optimization
             if (verbose == eVerboseSummary)  fprintf(stderr, ", SO");
             OptSO();       // see StcOptSO.cpp
             break;

         case eSimulAnnl:  // simulated annealing
             if (verbose == eVerboseSummary)  fprintf(stderr, ", SA");
             OptWTA();           // initialize to reasonable starting point (for low-T gradient descent)
             OptSimulAnnl();    // see StcSimulAnn.cpp
             break;

         case eBPAccel:
             OptBP();  // run the optimization
             break;

         case eBPSync:
             OptBPSync();  // run the optimization
             break;

         default:
             throw CError("CStereoMatcher::Optimize(): unknown optimization function");
         }

         if (final_energy < 0.0f)
         {
             if (!m_cost.Shape().SameIgnoringNBands(m_smooth.Shape()))
                 SmoothCostAll();
             float finalEd, finalEn;
             CStereoMatcher::ComputeEnergy(finalEd, finalEn);
             final_energy = finalEd + finalEn;
         }
     }

1.4.1 SmoothCostOne

     float SmoothCostOne(uchar *pixel1, uchar *pixel2, int cn)
     {
         float tmp = 0.0;
         ; k < cn; k++)
         {
             float tm = int(pixel1[k]) - int(pixel2[k]);
             tmp += tm*tm;
         }
         tmp = tmp/(cn - (cn > ));//归一化为单通道, ppm图像的通道为4
         tmp = sqrt(tmp);
         return (tmp < opt_grad_thresh) ? (opt_smoothness*opt_grad_penalty) : opt_smoothness;
     }

1.4.2 SmoothCostAll

     void SmoothCostAll()
     {    //calculate smoothness costs for DP and GC
         CShape sh = m_cost.m_shape;
         sh.nBands = ;//分为垂直和水平平滑代价
         m_smooth.ReAllocate(sh, false);
         int rows = sh.height;
         int cols = sh.width;
         int cn = m_reference.m_shape.nBands;

         char *im_data0_cr = m_reference.m_memStart;
         char *im_data0_dw = im_data0_cr + m_reference.m_rowSize;
         char *smooth_data0 = m_smooth.m_memStart;
         ; i < rows; i++, im_data0_cr += m_reference.m_rowSize, im_data0_dw += m_reference.m_rowSize, smooth_data0 += m_smooth.m_rowSize)
         {
             uchar *im_data1_cr = (uchar*)im_data0_cr;
             uchar *im_data1_dw = (uchar*)((i < rows - ) ? im_data0_dw : im_data0_cr);
             float *smooth_data1 = (float*)smooth_data0;
             ; j < cols; j++, im_data1_cr += cn, im_data1_dw += cn, smooth_data1 += )
             {
                 smooth_data1[] = (i < rows - ) ? SmoothCostOne(im_data1_cr, im_data1_dw, cn) : ;
                 smooth_data1[] = (j < cols - ) ? SmoothCostOne(im_data1_cr, im_data1_cr + cn, cn) : ;
             }
         }
     }

1.4.3 ComputeEnergy

     static void ComputeEnergy(CFloatImage& m_cost, CFloatImage& m_smooth, CIntImage& m_disparity, float& dataEnergy, float& smoothEnergy)
     {
         int cols = m_cost.m_shape.width;
         int rows = m_cost.m_shape.height;
         int cn1 = m_cost.m_shape.nBands;
         int cn2 = m_smooth.m_shape.nBands;

         float sum1 = 0.0f;
         float sum2 = 0.0f;
         char *disp_data0_cr = m_disparity.m_memStart;
         char *disp_data0_dw = disp_data0_cr + m_disparity.m_rowSize;
         char *datacost_data0 = m_cost.m_memStart;
         char *smoothcost_data0 = m_smooth.m_memStart;
         ; i < rows; i++, disp_data0_cr += m_disparity.m_rowSize, disp_data0_dw += m_disparity.m_rowSize, datacost_data0 += m_cost.m_rowSize, smoothcost_data0 += m_smooth.m_rowSize)
         {
             int *disp_data1_cr = (int*)disp_data0_cr;
             ) ? disp_data0_dw : disp_data0_cr);
             float *datacost_data1 = (float*)datacost_data0;
             float *smoothcost_data1 = (float*)smoothcost_data0;
             ; j < cols; j++, datacost_data1 += cn1, smoothcost_data1 += cn2)
             {
                 int d = disp_data1_cr[j];

                 sum1 = sum1 + datacost_data1[d];
                 sum2 = sum2 + ((i < rows -  && d != disp_data1_dw[j]) ? smoothcost_data1[] : );//水平平滑代价
                 sum2 = sum2 + ((j < cols -  && d != disp_data1_cr[j + ]) ? smoothcost_data1[] : );//垂直平滑代价
             }
         }
         dataEnergy = sum1;
         smoothEnergy = sum2;

         //float GC_scale = (1 << 30) / (256 * 256);
         //GC_scale = (1 << 30) / (sum1 + sum2);
     }

1.5 Refine

 void Refine()
     {    //Refine the matching disparity to get a sub-pixel match
         if (opt_fn != eNoOpt) ScaleAndOffset(m_disparity, m_float_disparity, disp_step, disp_min);//无优化则跳过
          || disp_n < )  return; //不进行提纯

         ; i < m_cost.m_shape.height; i++)
         {
             , i, );
             , i, );
             , i, );

             ; j < m_cost.m_shape.width; j++, cost += disp_n)
             {
                 //Get minimum, but offset by 1 from ends
                 ) - (disp[j] == disp_n - );

                 //Compute the equations of the parabolic fit
                 ];        //a*(d-1)^2+b*(d-1)+c=c0
                 float c1 = cost[d_min];            //a*(d  )^2+b*(d  )+c=c1
                 ];        //a*(d+1)^2+b*(d+1)+c=c2
                 float a = 0.5 * (c0 - 2.0 * c1 + c2);    //解得a=c2-2*c1+c0, 对称轴=-b/2*a=d-(c2-c0)/(4*a)
                 float b = 0.5 * (c2 - c0);
                 if (a <= 0.0 || a < 0.5 * fabs(b))    continue;

                 //Solve for minimum
                 float x0 = -0.5 * b / a;
                 float d_new = m_disp_step * (d_min + x0) + disp_min;
                 fdisp[j] = d_new;
             }
         }
     }

2.代价聚合
2.1 BoxFiter

 {
     //与cv::boxFilter一致
 }

2.2 LASW

 void LASW(CFloatImage &srcCost, CFloatImage &dstCost, CByteImage &im0, CByteImage &im1, int xWidth, int yWidth, float proximity, float similarity, int color_space, int diff_iter)
 {
     int frm_total = im0.m_shape.width*im0.m_shape.height;
     int win_radius = (int)(xWidth / 2.0);
     int win_total = xWidth*yWidth;

     //0.分配所需空间
     double **Lab0 = new double *[frm_total];
     double **Lab1 = new double *[frm_total];
     float **rawCostf = new float *[frm_total];
     float **dstCostf = new float *[frm_total];
     float **sw0f = new float *[frm_total];
     float **sw1f = new float *[frm_total];
     ; i < frm_total; i++)
     {
         Lab0[i] = ];
         Lab1[i] = ];
         rawCostf[i] = new float[srcCost.m_shape.nBands];
         dstCostf[i] = new float[srcCost.m_shape.nBands];
         sw0f[i] = new float[win_total];
         sw1f[i] = new float[win_total];
     }

     //1.计算Lab图像并
     , index = ; i<im0.m_shape.height; i++)
         ; j<im0.m_shape.width; j++, index++)
         {
             double R, G, B;
             R = im0.Pixel(j, i, ((im0.m_shape.nBands - ) == ) ?  : );
             G = im0.Pixel(j, i, ((im0.m_shape.nBands - ) == ) ?  : );
             B = im0.Pixel(j, i, ((im0.m_shape.nBands - ) == ) ?  : );
             RGB2Lab(R, G, B, Lab0[index][], Lab0[index][], Lab0[index][]);
             R = im1.Pixel(j, i, ((im1.m_shape.nBands - ) == ) ?  : );
             G = im1.Pixel(j, i, ((im1.m_shape.nBands - ) == ) ?  : );
             B = im1.Pixel(j, i, ((im1.m_shape.nBands - ) == ) ?  : );
             RGB2Lab(R, G, B, Lab1[index][], Lab1[index][], Lab1[index][]);
         }

     //2.取得原始代价
     , index = ; i<srcCost.m_shape.height; i++)
         ; j < srcCost.m_shape.width; j++, index++)
             ; k<srcCost.m_shape.nBands; k++)
                 rawCostf[index][k] = (float)srcCost.Pixel(j, i, k);

     //3.计算自适应权重
     calcASW(Lab0, sw0f, proximity, similarity, win_radius, im0.m_shape.width, im0.m_shape.height);
     calcASW(Lab1, sw1f, proximity, similarity, win_radius, im0.m_shape.width, im0.m_shape.height);

     //4.求和自适应权重
     ; u<diff_iter; u++)
     {
         aggrASW(sw0f, sw1f, rawCostf, dstCostf, srcCost.m_shape.nBands, win_radius, im0.m_shape.width, im0.m_shape.height);
         ; k<frm_total; k++)
             memcpy(rawCostf[k], dstCostf[k], sizeof(float)*srcCost.m_shape.nBands);
     }

     //5.返回结果
     , index = ; i<dstCost.m_shape.height; i++)
         ; j<dstCost.m_shape.width; j++, index++)
             ; k<dstCost.m_shape.nBands; k++)
                 (())[k] = dstCostf[index][k];

     //6.删除分配的空间
     ; i < frm_total; i++)
     {
         delete Lab0[i];
         delete Lab1[i];
         delete rawCostf[i];
         delete dstCostf[i];
         delete sw0f[i];
         delete sw1f[i];
     }
 }

2.2.1 RGB2Lab

 void RGB2Lab(double &R, double &G, double &B, double &L, double &a, double &b)
 {
     double X = 0.412453*R + 0.357580*G + 0.189423*B;
     double Y = 0.212671*R + 0.715160*G + 0.072169*B;
     double Z = 0.019334*R + 0.119193*G + 0.950227*B;
     double Xo = 244.66128;
     double Yo = 255.0;
     double Zo = 277.63227;
     double tm1 = X / Xo; tm1 = (tm1 > 0.008856) ? pow(tm1, 0.333333333) : (7.787*tm1 + 0.137931034);
     double tm2 = Y / Yo; tm2 = (tm2 > 0.008856) ? pow(tm2, 0.333333333) : (7.787*tm2 + 0.137931034);
     double tm3 = Z / Zo; tm3 = (tm3 > 0.008856) ? pow(tm3, 0.333333333) : (7.787*tm3 + 0.137931034);
     L =  * tm2 - ;
     a =  * (tm1 - tm2);
     b =  * (tm2 - tm3);
 }

2.2.2 calcASW

 void calcASW(double **Lab, float **SW, double proximity, double similarity, int win_radius, int cols, int rows)
 {
     int frm_total = cols*rows;
      * win_radius + )*( * win_radius + );

     //0.先清零
     ; i<frm_total; i++)
         memset(SW[i], , sizeof(float)*win_total);

     //1.计算自适用权重
     , index = ; i<rows; i++)    //计算index点的领域点(共win_total个)相对index点的自适应权重,
         ; j<cols; j++, index++)    //每个自适应权重占用SW的一个通道,索引越小的通道对应越左上角的点
             ; y <= win_radius; y++)//依次从左到右从上到下计算领域点相对于index点的自适应权重, k表示第k个领域点
             {
                 int ii = i + y;
                  || ii >= rows)//此行领域点越界,所以对应的权重都为0
                 {
                     for (int x = -win_radius; x <= win_radius; x++, k++)
                         SW[index][k] = ;//可用menset加快处理
                     continue;
                 }
                 for (int x = -win_radius; x <= win_radius; x++, k++)
                 {
                     )    //之前的循环已经计算则无需再计算
                         continue;
                     int jj = j + x;
                      || jj >= cols)//此领域点越界,所以对应的权重为0
                     {
                         SW[index][k] = ;
                         continue;
                     }
                     ];
                     ];
                     ];
                     int index1 = ii*cols + jj;//领域点坐标
                     ];
                     ];
                     ];
                     double weight_prox = exp(-sqrt((double)(y*y + x*x)) / proximity);
                     double weight_simi = exp(-sqrt((L1 - L2)*(L1 - L2) + (a1 - a2)*(a1 - a2) + (b1 - b2)*(b1 - b2)) / similarity);
                     SW[index][k] = (float)(weight_prox*weight_simi);
                     SW[index1][win_total -  - k] = SW[index][k];//得到A相对O权重的同时也得到O相对A权重
                 }
             }
 }

2.2.3 aggrASW

 void aggrASW(float **SW0, float **SW1, float **rawCost, float **dstCost, int cn, int win_radius, int cols, int rows)
 {
     , index = ; i<rows; i++)
         ; j<cols; j++, index++)
             ; d<cn; d++)//处理第d个通道
             {
                 int index1 = j - d;//右图像上匹配点的坐标
                 ) index1 = index1 + cols;
                 else if (index1 >= cols) index1 = index1 - cols;
                 index1 = i*cols + index1;//右图像上匹配点的坐标

                 ;
                 ;
                 ; y <= win_radius; y++)//k表示第k个领域点
                 {
                     int ii = i + y;
                     ) ii = ii + rows;
                     if (ii >= rows) ii = ii - rows;

                     for (int x = -win_radius; x <= win_radius; x++, k++)
                     {
                         int jj = j + x;
                         ) jj = cols + jj;
                         else if (jj >= cols) jj = jj - cols;

                         double weight = SW0[index][k] * SW1[index1][k];//权重之积
                         weight_sum = weight_sum + weight;
                         int index_k = ii*cols + jj;//index_k表示第k个领域点
                         cost_sum = cost_sum + rawCost[index_k][d] * weight;
                     }
                 }
                 dstCost[index][d] = (float)(cost_sum / weight_sum);
             }
 }

3.视差优化
3.1 OptWTA

 void CStereoMatcher::OptWTA()
 {
     CShape sh = m_cost.Shape();
     int cols = sh.width;
     int rows = sh.height;

     ; i < rows; i++)
     {
         , i, );
         , i, );
         ; j < cols; j++, cost += disp_n)//m_cost的通道数为disp_n
         {
             ;
             ];
             ; d < disp_n; d++)
             if (cost[d] < best_cost)
             {
                 best_cost = cost[d];
                 best_disp = d;
             }
         disp[j] = best_disp;
         }
     }
 }

3.2 OptSO

    void OptSO()
     {    // scanline optimization
         int cols = m_cost.m_shape.width;
         int rows = m_cost.m_shape.height;

         ;
         int rowElem = cols*disp_n;
         char *datacost_data0 = m_cost.m_memStart;
         char *smoothcost_data0 = m_smooth.m_memStart;
         char *disparity_data0 = m_disparity.m_memStart;
         float *sumcost_data0 = (float*)malloc(rowElem*sizeof(float));//存储每一列的每一视差(通道)的最优结果
         int *position_data0 = (int*)malloc(rowElem*sizeof(int));//存储每一列取得最优结果时对应的前一列哪个索引的视差(通道)
         ; i < rows; i++, datacost_data0 += m_cost.m_rowSize, smoothcost_data0 += m_smooth.m_rowSize, disparity_data0 += m_disparity.m_rowSize)//对每一行
         {
             float *datacost_data1 = (float*)datacost_data0;
             float *smoothcost_data1 = (float*)smoothcost_data0;
             int *position_data1 = position_data0;
             float *sumcost_data1 = sumcost_data0;

             //1.初始化第一列
             ; d < disp_n; d++)
             {
                 position_data1[d] = -;
                 sumcost_data1[d] = datacost_data1[d];
             }
             datacost_data1 += disp_n; position_data1 += disp_n; sumcost_data1 += disp_n;//定位第二列

             //2.用动态归划处理后续列
             ; j < cols; j++, datacost_data1 += disp_n, position_data1 += disp_n, sumcost_data1 += disp_n, smoothcost_data1 += )//对每一列
             {
                 ; d1 < disp_n; d1++)//对每一通道(视差)
                 {
                     sumcost_data1[d1] = COST_MAX; //当前列当前通道的最小匹配代价
                     position_data1[d1] = -; //最小匹配代价对应前一列的哪个通道(视差)
                     ; d0 < disp_n; d0++)//对前一列的每一通道(视差)
                     {
                         float tm = datacost_data1[d1]; //当前列当前通道(视差)的原始代价
                         tm = tm + sumcost_data1[d0 - disp_n];//前一列的每一通道(视差)的最小匹配代价
                         tm = (d0 != d1) ? (tm + smoothcost_data1[]) : tm;//两通道(视差)间的平滑代价(第二通道才是水平方向的平滑代价)
                         if (tm < sumcost_data1[d1])
                         {
                             sumcost_data1[d1] = tm;
                             position_data1[d1] = d0;
                         }
                     }
                 }
             }

             //3.在尾列查看最优结果(指针来源与前面不相关)
             position_data1 -= disp_n;
             sumcost_data1 -= disp_n;
             float best_cost = COST_MAX;
             ;
             ; d < disp_n; d++)
                 if (sumcost_data1[d] < best_cost)
                 {
                     best_cost = sumcost_data1[d];
                     best_disp = d;
                 }

             //4.回溯(从尾列到首列)
             int *disparity_data1 = (int*)disparity_data0;
             ; x--, position_data1 -= disp_n)
             {
                 disparity_data1[x] = best_disp;
                 best_disp = position_data1[best_disp];
             }
         }
         free(sumcost_data0);
         free(position_data0);
     }

3.3 OptDP

     void OptDP()
     {    //dynamic programming stereo (Intille and Bobick, no GCPs)
         float ocl = opt_occlusion_cost;
         float ocr = opt_occlusion_cost;
         ; // marker for occluded pixels (use 0 if you want to leave occluded pixels black)
         int cols = m_cost.m_shape.width;
         int rows = m_cost.m_shape.height;

         ] = { , , , , , ,  };//前一点的状态
         ] = { , , , , , ,  };//当前点的状态
         ;//每点的基元数=通道数*状态数
         , up = ;
         ] = { left, left, diag, diag, up, up, left };//不同状态时最优的前一点的位置与当前点的跨度
         , dup = ;
         ] = { dleft, dleft, ddiag, ddiag, dup, dup, dleft };//不同状态时视差的跨度
         ] = { , , , , , ,  }; //视差为0时没有左下角的前一点
         ] = { , , , , , ,  }; //视差为max没有同列的上一点

         int rowElem = cols * colElem;
         char *datacost_data0 = m_cost.m_memStart;
         char *smoothcost_data0 = m_smooth.m_memStart;
         ) * m_disparity.m_pixSize;//视差是从最后列开始计算的
         int *position_data0 = (int*)malloc(rowElem*sizeof(int));//存储每一列取得最优结果时对应的前一列哪个索引的视差(通道)
         float *sumcost_data0 = (float*)malloc(rowElem*sizeof(float));//存储每一列的每一视差(通道)的最优结果
         )*colElem;
         )*colElem;
         ; i < rows; i++, datacost_data0 += m_cost.m_rowSize, smoothcost_data0 += m_smooth.m_rowSize, disparity_data0 += m_disparity.m_rowSize)
         {
             float *datacost_data1 = (float*)datacost_data0;
             float *smoothcost_data1 = (float*)smoothcost_data0;
             int *position_data1 = (int*)position_data0;
             float *sumcost_data1 = (float*)sumcost_data0;

             //1.初始化第一列(每列有disp_n个通道(视差)而每个视差又有3个状态)
             {
                 float *datacost_data2 = datacost_data1;
                 int *position_data2 = position_data1;
                 float *sumcost_data2 = sumcost_data1;
                 ; d < disp_n; d++, datacost_data2++, position_data2 += , sumcost_data2 += )
                 {    //强制第一个点是非遮挡的
                     position_data2[] = ;
                     position_data2[] = -;
                     position_data2[] = -;
                     sumcost_data2[] = datacost_data2[];
                     sumcost_data2[] = COST_MAX;
                     sumcost_data2[] = COST_MAX;
                 }
                 datacost_data1 += disp_n; position_data1 += colElem; sumcost_data1 += colElem;//定位到第二列
             }

             //2.用动态归划处理后续列
             ; j < cols; j++, datacost_data1 += disp_n, smoothcost_data1 += , position_data1 += colElem, sumcost_data1 += colElem)//对每一列
             {
                 ;//先定位到第二列的最后一个通道,因为要从最后个通道开始处理
                 float *smoothcost_data2 = smoothcost_data1;//平滑代价只与列相关而与通道无关
                 ;//先定位到第二列的最后一个通道,因为要从最后个通道开始处理
                 ;//从最后个通道开始处理是因为m→R和r→R时处理当前通道时要用到下一通道的数据
                 ; d1 >= ; d1--, datacost_data2--, position_data2 -= , sumcost_data2 -= ) //对每一通道(视差)
                 {
                     sumcost_data2[] = COST_MAX;//当前列当前通道第0状态的最小匹配代价
                     sumcost_data2[] = COST_MAX;//当前列当前通道第1状态的最小匹配代价
                     sumcost_data2[] = COST_MAX;//当前列当前通道第2状态的最小匹配代价
                     position_data2[] = -; //第0状态最小匹配代价对应前一列的哪个通道(视差)
                     position_data2[] = -; //第1状态最小匹配代价对应前一列的哪个通道(视差)
                     position_data2[] = -; //第2状态最小匹配代价对应前一列的哪个通道(视差)

                     ; t < ; t++)
                     {
                          && border0[t]) || (d1 == disp_n -  && border1[t]))  continue;//前一点不存在
                         int pre_state = state0[t];
                         int cur_state = state1[t];
                         int pre_pos = steps[t] + pre_state;

                          ? ocl : (cur_state ==  ? ocr : datacost_data2[]));//当前列当前通道(视差)的原始代价
                         tm = tm + sumcost_data2[pre_pos];//前一列的每一通道(视差)的每一状态的最小匹配代价
                         tm = (t ==  || t == ) ? (tm + smoothcost_data2[]) : tm;//平滑代价(从遮挡到匹配时)//第二通道才是水平方向的平滑代价
                         if (tm < sumcost_data2[cur_state])
                         {
                             sumcost_data2[cur_state] = tm;
                             position_data2[cur_state] = t;
                         }
                     }
                 }
             }

             //3.在尾列查看最优结果(指针来源与前面不相关)
             float best_cost = COST_MAX;
             ;
             ;//只考虑左右图像都可见的状态
             {
                 float *sumcost_data2 = sumcost_data1_endcol;//因为在遍历通道所以用data2
                 ; d < disp_n; d++, sumcost_data2 += )
                     if (sumcost_data2[best_state] < best_cost)
                     {
                         best_cost = sumcost_data2[best_state];
                         best_disp = d;
                     }
             }

             //4.回溯(从尾列到首列)(指针来源与前面不相关)
             position_data1 = position_data1_endlcol + best_disp *  + best_state;//因为在遍历列所以用data1
             int *disparity_data1 = (int*)disparity_data0;
             while (position_data1 >= position_data0)
             {
                 int pos = *position_data1;
                 int current_state = state1[pos];
                 int prev_state = state0[pos];
                 *disparity_data1 = (current_state == ) ? best_disp : occ;

                 int stride = steps[pos] - current_state + prev_state;
                 position_data1 += stride;

                 best_disp += disp_step[pos];
                 )
                 {
                     best_disp += disp_n;
                     disparity_data1--;
                 }
             }
         }
         free(sumcost_data0);
         free(position_data0);

         //填充遮挡点(可单独写成函数)
         )
         {
             char *disp_data0 = m_disparity.m_memStart;
             ; i < rows; i++, disp_data0 += m_disparity.m_rowSize)
             {
                 int *disp_data1 = (int*)disp_data0;

                 //找到第一个非遮掩点
                 int nonocc;
                 ; j < cols; j++)
                     if (disp_data1[j] != occ)
                     {
                         nonocc = disp_data1[j];
                         break;
                     }

                 //除最左边的遮挡点外用与之右相邻的非遮挡点填充外, 其余遮挡点都用与之左相邻的非遮挡点填充
                 ; j < cols; j++)
                 {
                     int d = disp_data1[j];
                     if (d == occ)
                         disp_data1[j] = nonocc;
                     else
                         nonocc = d;
                 }
             }
         }
     }

8.杂项函数
8.1 BirchfieldTomasiMinMax

 void BirchfieldTomasiMinMax(int* buffer, int* min, int* max, int cols, int cn)
 {
     int cur, pre, nex;
     //第一个值
     cur = buffer[];
     pre = (buffer[] + buffer[] + ) / ;
     nex = (buffer[] + buffer[] + ) / ;
     min[] = __min(cur, __min(pre, nex));
     max[] = __max(cur, __max(pre, nex));
     //中间的值
     ; i < cols - ; i++)
     {
         cur = buffer[i];
         pre = (buffer[i] + buffer[i - ] + ) / ;
         nex = (buffer[i] + buffer[i + ] + ) / ;
         min[i] = __min(cur, __min(pre, nex));
         max[i] = __max(cur, __max(pre, nex));
     }
     //最后个值
     cur = buffer[cols - ];
     pre = (buffer[cols - ] + buffer[cols - ] + ) / ;
     nex = (buffer[cols - ] + buffer[cols - ] + ) / ;
     min[cols - ] = __min(cur, __min(pre, nex));
     max[cols - ] = __max(cur, __max(pre, nex));
 }

9. Image.h添加

(1)将所有private及protected成员变成public

(2)添加如下代码:

 #include <opencv2/opencv.hpp>
 using namespace cv;//将所有权限改为public

 template <class T> Mat ImgToMat(CImageOf<T> *src)
 {
     Mat dst;
     const char *depth = src->m_pTI->name();

     )
     {
         dst = Mat(src->m_shape.height, src->m_shape.width, CV_8UC(src->m_shape.nBands));
         ; k < src->m_shape.nBands; k++)
             ; i < src->m_shape.height; i++)
                 ; j < src->m_shape.width; j++)
                     *((unsigned char*)(dst.data + i*dst.step + j*dst.elemSize() + k*dst.elemSize1())) = *((unsigned char*)(src->m_memStart + i*src->m_rowSize + j*src->m_pixSize + k*src->m_bandSize));
     }
     )
     {
         dst = Mat(src->m_shape.height, src->m_shape.width, CV_8SC(src->m_shape.nBands));
         ; k < src->m_shape.nBands; k++)
             ; i < src->m_shape.height; i++)
                 ; j < src->m_shape.width; j++)
                     *((char*)(dst.data + i*dst.step + j*dst.elemSize() + k*dst.elemSize1())) = *((char*)(src->m_memStart + i*src->m_rowSize + j*src->m_pixSize + k*src->m_bandSize));
     }
     )
     {
         dst = Mat(src->m_shape.height, src->m_shape.width, CV_16UC(src->m_shape.nBands));
         ; k < src->m_shape.nBands; k++)
             ; i < src->m_shape.height; i++)
                 ; j < src->m_shape.width; j++)
                     *((unsigned short*)(dst.data + i*dst.step + j*dst.elemSize() + k*dst.elemSize1())) = *((unsigned short*)(src->m_memStart + i*src->m_rowSize + j*src->m_pixSize + k*src->m_bandSize));
     }
     )
     {
         dst = Mat(src->m_shape.height, src->m_shape.width, CV_16SC(src->m_shape.nBands));
         ; k < src->m_shape.nBands; k++)
             ; i < src->m_shape.height; i++)
                 ; j < src->m_shape.width; j++)
                     *((short*)(dst.data + i*dst.step + j*dst.elemSize() + k*dst.elemSize1())) = *((short*)(src->m_memStart + i*src->m_rowSize + j*src->m_pixSize + k*src->m_bandSize));
     }
     )
     {
         dst = Mat(src->m_shape.height, src->m_shape.width, CV_32FC(src->m_shape.nBands));
         ; k < src->m_shape.nBands; k++)
             ; i < src->m_shape.height; i++)
                 ; j < src->m_shape.width; j++)
                     *((float*)(dst.data + i*dst.step + j*dst.elemSize() + k*dst.elemSize1())) = *((float*)(src->m_memStart + i*src->m_rowSize + j*src->m_pixSize + k*src->m_bandSize));
     }
     )
     {
         dst = Mat(src->m_shape.height, src->m_shape.width, CV_32SC(src->m_shape.nBands));
         ; k < src->m_shape.nBands; k++)
             ; i < src->m_shape.height; i++)
                 ; j < src->m_shape.width; j++)
                     *((int*)(dst.data + i*dst.step + j*dst.elemSize() + k*dst.elemSize1())) = *((int*)(src->m_memStart + i*src->m_rowSize + j*src->m_pixSize + k*src->m_bandSize));
     }
     )
     {
         dst = Mat(src->m_shape.height, src->m_shape.width, CV_64FC(src->m_shape.nBands));
         ; k < src->m_shape.nBands; k++)
             ; i < src->m_shape.height; i++)
                 ; j < src->m_shape.width; j++)
                     *((double*)(dst.data + i*dst.step + j*dst.elemSize() + k*dst.elemSize1())) = *((double*)(src->m_memStart + i*src->m_rowSize + j*src->m_pixSize + k*src->m_bandSize));
     }
     return dst;
 }

 template <class T> CImageOf<T> MatToImg(Mat* src)
 {
     CImageOf<T> dst;
     CShape shape(src->cols, src->rows, src->channels());
     dst.ReAllocate(shape);
     const char *depth = dst.m_pTI->name();

     )
     {
         ; k < dst.m_shape.nBands; k++)
             ; i < dst.m_shape.height; i++)
                 ; j < dst.m_shape.width; j++)
                     *((unsigned char*)(dst.m_memStart + i*dst.m_rowSize + j*dst.m_pixSize + k*dst.m_bandSize)) = *((unsigned char*)(src->data + i*src->step + j*src->elemSize() + k*src->elemSize1()));
     }
     )
     {
         ; k < dst.m_shape.nBands; k++)
             ; i < dst.m_shape.height; i++)
                 ; j < dst.m_shape.width; j++)
                     *((char*)(dst.m_memStart + i*dst.m_rowSize + j*dst.m_pixSize + k*dst.m_bandSize)) = *((char*)(src->data + i*src->step + j*src->elemSize() + k*src->elemSize1()));
     }
     )
     {
         ; k < dst.m_shape.nBands; k++)
             ; i < dst.m_shape.height; i++)
                 ; j < dst.m_shape.width; j++)
                     *((unsigned short*)(dst.m_memStart + i*dst.m_rowSize + j*dst.m_pixSize + k*dst.m_bandSize)) = *((unsigned short*)(src->data + i*src->step + j*src->elemSize() + k*src->elemSize1()));
     }
     )
     {
         ; k < dst.m_shape.nBands; k++)
             ; i < dst.m_shape.height; i++)
                 ; j < dst.m_shape.width; j++)
                     *((short*)(dst.m_memStart + i*dst.m_rowSize + j*dst.m_pixSize + k*dst.m_bandSize)) = *((short*)(src->data + i*src->step + j*src->elemSize() + k*src->elemSize1()));
     }
     )
     {
         ; k < dst.m_shape.nBands; k++)
             ; i < dst.m_shape.height; i++)
                 ; j < dst.m_shape.width; j++)
                     *((float*)(dst.m_memStart + i*dst.m_rowSize + j*dst.m_pixSize + k*dst.m_bandSize)) = *((float*)(src->data + i*src->step + j*src->elemSize() + k*src->elemSize1()));
     }
     )
     {
         ; k < dst.m_shape.nBands; k++)
             ; i < dst.m_shape.height; i++)
                 ; j < dst.m_shape.width; j++)
                     *((int*)(dst.m_memStart + i*dst.m_rowSize + j*dst.m_pixSize + k*dst.m_bandSize)) = *((int*)(src->data + i*src->step + j*src->elemSize() + k*src->elemSize1()));
     }
     )
     {
         ; k < dst.m_shape.nBands; k++)
             ; i < dst.m_shape.height; i++)
                 ; j < dst.m_shape.width; j++)
                     *((double*)(dst.m_memStart + i*dst.m_rowSize + j*dst.m_pixSize + k*dst.m_bandSize)) = *((double*)(src->data + i*src->step + j*src->elemSize() + k*src->elemSize1()));
     }
     return dst;
 }

 template <class T> void saveXML(string name, CImageOf<T>* src)
 {
     Mat dst = ImgToMat<T>(src);
     FileStorage fs;
     fs.open("./../TestData/" + name, FileStorage::WRITE);
     fs << "mat" << dst;
     fs.release();
 }

 template <class T> void saveXML(string name, CImageOf<T>* src, int count)
 {
     vector<Mat> dst;
     ; i<count; i++)
         dst.push_back(ImgToMat<T>(&src[i]));
     FileStorage fs;
     fs.open("./../TestData/" + name, FileStorage::WRITE);
     fs << "vectorMat" << dst;
     fs.release();
 }

立体匹配:关于理解middlebury提供的立体匹配代码后的精减的更多相关文章

  1. 立体匹配:关于Middlebury提供的源码的简化使用

    Middlebury提供的源码,虽然花了不到一个小时就运行起来啦.但说实话,它那循环读取脚本命令来执行算法真是让我费了不少头脑,花了近三天时间,我才弄明白了它的运行机制.你说,我就想提取一下算法,你给 ...

  2. 立体匹配:关于Middlebury提供的源码的简化后的结构

  3. 深入理解Object提供的阻塞和唤醒API

    深入理解Object提供的阻塞和唤醒API 前提 前段时间花了大量时间去研读JUC中同步器AbstractQueuedSynchronizer的源码实现,再结合很久之前看过的一篇关于Object提供的 ...

  4. 通过Webstorm上传代码到Github、更新代码后同步到github及克隆github代码到本地的方法

    导读: Github做为IT爱好者分享代码的一个知名的平台,广受大家喜欢,那么我们平时该怎么将自己写的代码上传到github上面保存并且提供给其他人参考? 我想方法不外乎如下几个: 1.直接在gith ...

  5. Gitlab利用Webhook实现Push代码后的jenkins自动构建

    之前部署了Gitlab的代码托管平台和Jenkins的代码发布平台.通常是开发后的代码先推到Gitlab上管理,然后在Jenkins里通过脚本构建代码发布.这种方式每次在发版的时候,需要人工去执行je ...

  6. Git克隆代码后更新代码上传至服务器

    首先在本地新建一个文件夹,鼠标右键点击Git clone(熟悉命令的可以直接在Git Bsah Here 里输入命令进行克隆), 点击后在弹框中输入服务器url后点击ok               ...

  7. Gitlab使用Webhook实现Push代码后的jenkins自动构建

    本文出自https://www.cnblogs.com/kevingrace/p/6479813.html 怕以后找不到,所以先写到自己博客中 Gitlab利用Webhook实现Push代码后的jen ...

  8. Eclipse中避免修改后台代码后手动install和重启

      之前每次修改maven多模块项目后都得重新执行mvn install ,install完还得重启jetty/tomcat服务器,非常浪费   时间,其实修改代码后可以不用执行install,也不用 ...

  9. 更改html代码后网页不更新

    写了一个非常简单的 html 页面,只有简单的跳转功能,但是在 Eclipse 下更改代码后用 chrome 浏览器打开时还是显示原来的网页.开始我以为是网页有错误或者有不规范的地方,因为我编写的是 ...

随机推荐

  1. 传递给函数的隐含参数:arguments及递归函数的实现

    传递给函数的隐含参数:arguments当进行函数调用时,除了指定的参数外,还创建一个隐含的对象——arguments.arguments是一个类似数组但不是数组的对象,说它类似是因为它具有数组一样的 ...

  2. Python关键字yield的解释(stackoverflow)

    3.1. 提问者的问题 Python关键字yield的作用是什么?用来干什么的? 比如,我正在试图理解下面的代码: def node._get_child_candidates(self, dista ...

  3. 一个完整的JENKINS下的ANT BUILD.XML文件(Jenkins可以参考)

    一个完整的JENKINS下的ANT BUILD.XML文件 <?xml version="1.0" encoding="UTF-8"?> <p ...

  4. Asianux的SSH登录问题,密码不正确解决

    第一.ssh服务默认是关闭的,需要手动打开 [root@Asianux ~]# service sshd start      启动 [root@Asianux ~]#chkconfig sshd - ...

  5. eclipse中tomcat加gc日志输出

    -XX:ParallelGCThreads=4 -XX:+PrintGCDetails

  6. 【Hadoop需要的Jar包】Hadoop编程-pom.xml文件

    JDK版本的要求 Hadoop 2.7 以及之后的版本,需要JDK 7: Hadoop 2.6 以及之前的版本,支持JDK 6: 对于Hadoop1.x.x版本,只需要引入1个jar: hadoop- ...

  7. linq简介

    语言集成查询(Language INtegrated Query,LINQ)是一项微软技术,新增一种自然查询的SQL语法到.NET Framework的编程语言中,可支持Visual Basic .N ...

  8. CXF发布restful WebService的入门例子(服务器端)

    研究了两天CXF对restful的支持.   现在,想实现一个以 http://localhost:9999/roomservice 为入口, http://localhost:9999/roomse ...

  9. BPEL_Oracle BPEL新一代工作流介绍(概念)

    2014-11-02 Created By BaoXinjian

  10. POJ 1269 Intersecting Lines(计算几何)

    题意:给定4个点的坐标,前2个点是一条线,后2个点是另一条线,求这两条线的关系,如果相交,就输出交点. 题解:先判断是否共线,我用的是叉积的性质,用了2遍就可以判断4个点是否共线了,在用斜率判断是否平 ...