立体匹配:关于理解middlebury提供的立体匹配代码后的精减
Middlebury立体匹配源码总结
优化方法 |
图像可否预处理 |
代价计算可否采用BT方式 |
可选代价计算方法 |
可否代价聚合 |
可否MinFilter优化原始代价 |
WTA-Box |
可以 |
可以 |
AD/SD |
可以,聚合尺寸可变,迭代次数1次 |
可以 |
WTA-Binomial |
可以 |
可以 |
AD/SD |
可以,聚合尺寸固定,迭代次数可变 |
不可以 |
WTA-Diffusion |
可以 |
可以 |
AD/SD |
可以,聚合尺寸固定,迭代次数可变 |
不可以 |
WTA-membrane |
可以 |
可以 |
AD/SD |
可以,聚合尺寸固定,迭代次数可变 |
不可以 |
WTA-Bayesian |
可以 |
可以 |
AD/SD |
可以,聚合尺寸固定,迭代次数可变 |
不可以 |
WTA-LASW |
可以 |
可以 |
AD/SD |
可以,聚合尺寸可变,迭代次数1次 |
不可以 |
SO |
可以 |
可以 |
AD/SD |
不可以 |
不可以 |
DP |
可以 |
可以 |
AD/SD |
不可以 |
不可以 |
GC |
可以 |
可以 |
AD/SD |
不可以 |
不可以 |
SA |
可以 |
可以 |
AD/SD |
不可以 |
不可以 |
BPAccel |
可以 |
可以 |
AD/SD |
不可以 |
不可以 |
BPSync |
可以 |
可以 |
AD/SD |
不可以 |
不可以 |
1. 主线函数
1.0 ComputeCorrespondence
- void ComputeCorrespondence()
- {
- CShape sh = m_frame[frame_ref].input_image.Shape();
- //1.计算m_frame_xxx, m_disp_xxx, disp_step, disp_n, m_match_outside
- //只考虑disp_step==1的情况,所以可进行以下简化
- //且后文件将除m_disp_n外的所有m_frame_xxx和m_disp_xxx都去掉
- m_frame_diff = ;// frame_match - frame_ref;
- m_frame_diff_sign = ;// (m_frame_diff > 0) ? 1 : -1;
- m_disp_num = ;// disp_step < 1.0f ? 1 : ROUND(disp_step);
- m_disp_den = ;// disp_step < 1.0f ? ROUND(1.0 / disp_step) : 1;
- m_disp_step_inv = ;// m_disp_den / (float)m_disp_num;
- m_disp_step = disp_step;// m_disp_num / (float)m_disp_den;
- m_disp_n = disp_n = disp_max-disp_min + ;// int(m_disp_step_inv * (disp_max - disp_min)) + 1;
- //disp_step = m_disp_step;
- //disp_n = m_disp_n;
- // Special value for border matches
- * : );
- int cutoff = (match_fn == eSD) ? match_max * match_max : abs(match_max);
- m_match_outside = __min(worst_match, cutoff); // trim to cutoff
- //2.设置左右图像
- m_reference.ReAllocate(sh);
- CopyPixels(m_frame[frame_ref].input_image, m_reference);
- m_matching.ReAllocate(sh);
- CopyPixels(m_frame[frame_match].input_image, m_matching);
- //3.设置标准视差图像
- sh.nBands = ;
- m_true_disparity.ReAllocate(sh); // ground truth
- ScaleAndOffset(m_frame[frame_ref].truth_image, m_true_disparity, 1.0f / disp_scale, disp_min);
- //4.生成浮点视差图像
- sh.nBands = ;
- m_float_disparity.ReAllocate(sh);
- m_float_disparity.ClearPixels();
- //5.生成整型视差图像
- sh.nBands = ;
- m_disparity.ReAllocate(sh); // winning disparities
- //6.生成代价函数图像
- sh.nBands = m_disp_n;// number of disparity levels
- m_cost.ReAllocate(sh); // raw matching costs (# bands = # disparities)
- //if (evaluate_only){暂且略去}
- //7.执行算法
- clock_t time0 = clock();
- PreProcess(); // see StcPreProcess.cpp
- RawCosts(); // see StcRawCosts.cpp
- Aggregate(); // see StcAggregate.cpp
- Optimize(); // see StcOptimize.cpp
- Refine(); // see StcRefine.cpp
- clock_t time1 = clock(); // record end time
- total_time = (float)(time1 - time0) / (float)CLOCKS_PER_SEC;
- //8.生成并设置深度图像
- sh.nBands = ;
- m_frame[frame_ref].depth_image.ReAllocate(sh);
- m_frame[frame_ref].depth_image.ClearPixels(); // set to 0 if we just reallocated
- ScaleAndOffset(m_float_disparity, m_frame[frame_ref].depth_image, disp_scale, -disp_min * disp_scale + 0.5);
- //9.
- CopyPixels(m_frame[frame_ref].input_image, m_reference);
- }
1.1 PreProcess
- void PreProcess()
- {
- ; iter < preproc_blur_iter; iter++)
- {
- ConvolveSeparable(m_reference, m_reference, ConvolveKernel_121, ConvolveKernel_14641, , );
- ConvolveSeparable(m_matching, m_matching, ConvolveKernel_121, ConvolveKernel_14641, , );
- }
- //Currently, we only support iterated binomial blur, to clean up the images a little.
- //This should help sub-pixel fitting work better, by making image shifts closer to a Taylor series expansion,
- //but will result in worse performance near discontinuity regions and in finely textured regions.
- //Other potential pre-processing operations (currently not implemented),might include:
- //(1)bias and gain normalization
- //(2)histogram equalization (global or local)
- //(3)rank statistics pre-processing
- }
1.2 RawCosts
- void RawCosts()
- {
- CShape sh = m_reference.Shape();
- int cols = sh.width;
- int rows = sh.height;
- int cn = sh.nBands;
- fprintf(stderr, match_fn == eAD ? "\nmatch_fn=AD, match_max=%d\n" : (match_fn == eSD ? "\nmatch_fn=SD, match_max=%d\n" : "\nmatch_fn=unknown, match_max=%d\n"), match_max);
- int cutoff = (match_fn == eSD) ? match_max * match_max : abs(match_max);
- ; d < disp_n; d++)
- {
- int disp = -(disp_min + d);//计算取不同视差值的代价(一个视差值对应一个cost的通道)
- ; i < rows; i++)
- {
- uchar *, i, );
- uchar *match = &m_matching.Pixel(, i, );
- , i, d);
- , jj = ; j < cols; j++, jj += disp_n)//m_cost的通道数为disp_n
- {
- //1.肯定为错误匹配则代价无穷大
- )
- {
- cost[jj] = m_match_outside;
- continue;
- }
- //2.否则计算AD代价或SD代价
- ;//多通道则是所有通道代价之和
- uchar *pixel0 = &ref[j*cn];
- uchar *pixel1 = &match[(j + disp)*cn];
- ; k < cn; k++)
- {
- int diff1 = (int)pixel1[k] - (int)pixel0[k];
- int diff2 = (match_fn == eSD) ? diff1 * diff1 : abs(diff1);
- diff_sum = diff_sum + diff2;
- }
- cost[jj] = __min(diff_sum, cutoff);
- }
- }
- }
- }
1.2.1 PadCosts
- void PadCosts()
- { // fill the outside parts of the DSI
- CShape sh = m_cost.Shape();
- int cols = sh.width;
- int rows = sh.height;
- ; d < m_disp_n; d++)
- {
- int disp = -(disp_min + d);
- ; i < rows; i++)
- {
- , i, d);
- , jj = ; j < cols; j++, jj += disp_n)//m_cost的通道数为disp_n
- cost[jj] = ((j + disp) < ) ? m_match_outside : cost[jj];
- }
- }
- }
1.3 Aggregate
- void Aggregate()
- {
- // Save the raw matching costs in m_cost0;
- CopyPixels(m_cost, m_cost0);
- //1.Perform given number of iteration steps
- ; iter < aggr_iter; iter++)
- switch (aggr_fn)
- {
- case eBox:
- ) fprintf(stderr, ", box=%d", aggr_window_size);
- BoxFilter(m_cost, m_cost, aggr_window_size, aggr_window_size, true);//可以用cv::boxFilter()代替
- break;
- case eASWeight:
- ) fprintf(stderr, ", AdaptiveWeight (box=%d gamma_p=%g gamma_s=%g color_space=%d )", aggr_window_size, aggr_gamma_proximity, aggr_gamma_similarity, aggr_color_space);
- LASW(m_cost, // initial matching cost
- m_cost, // aggregated matching cost
- m_reference, // reference image
- m_matching, // target image
- aggr_window_size, // window size - x
- aggr_window_size, // window size - y
- aggr_gamma_proximity, // gamma_p
- aggr_gamma_similarity, // gamma_c
- aggr_color_space, // color space
- aggr_iter // iteration number (aggregation)
- );
- iter = aggr_iter;
- break;
- default:
- throw CError("CStereoMatcher::Aggregate(): unknown aggregation function");
- }
- //2.Simulate the effect of shiftable windows
- ) MinFilter(m_cost, m_cost, aggr_minfilter, aggr_minfilter);
- //3.Pad the outside costs back up to bad values
- PadCosts();
- }
1.3.1 MinFilter
- {
- //略
- }
1.4 Optimize
- void Optimize()
- {
- // Select the best matches using local or global optimization
- // set up the smoothness cost function for the methods that need it
- if (opt_fn == eDynamicProg || opt_fn == eScanlineOpt || opt_fn == eGraphCut || opt_fn == eSimulAnnl || opt_fn == eBPAccel || opt_fn == eBPSync)
- {
- if (verbose == eVerboseSummary) fprintf(stderr, ", smooth=%g, grad_thres=%g, penalty=%g", opt_smoothness, opt_grad_thresh, opt_grad_penalty);
- SmoothCostAll();
- }
- switch (opt_fn)
- {
- case eNoOpt: // no optimization (pass through input depth maps)
- if (verbose == eVerboseSummary) fprintf(stderr, ", NO OPT");
- break;
- case eWTA: // winner-take-all (local minimum)
- if (verbose == eVerboseSummary) fprintf(stderr, ", WTA");
- OptWTA();
- break;
- case eGraphCut: // graph-cut global minimization
- if (verbose == eVerboseSummary) fprintf(stderr, ", GC");
- OptWTA(); // get an initial labelling (or just set to 0???)
- OptGraphCut(); // run the optimization
- break;
- case eDynamicProg: // scanline dynamic programming
- if (verbose == eVerboseSummary) fprintf(stderr, ", DP (occl_cost=%d)", opt_occlusion_cost);
- OptDP(); // see StcOptDP.cpp
- break;
- case eScanlineOpt: // scanline optimization
- if (verbose == eVerboseSummary) fprintf(stderr, ", SO");
- OptSO(); // see StcOptSO.cpp
- break;
- case eSimulAnnl: // simulated annealing
- if (verbose == eVerboseSummary) fprintf(stderr, ", SA");
- OptWTA(); // initialize to reasonable starting point (for low-T gradient descent)
- OptSimulAnnl(); // see StcSimulAnn.cpp
- break;
- case eBPAccel:
- OptBP(); // run the optimization
- break;
- case eBPSync:
- OptBPSync(); // run the optimization
- break;
- default:
- throw CError("CStereoMatcher::Optimize(): unknown optimization function");
- }
- if (final_energy < 0.0f)
- {
- if (!m_cost.Shape().SameIgnoringNBands(m_smooth.Shape()))
- SmoothCostAll();
- float finalEd, finalEn;
- CStereoMatcher::ComputeEnergy(finalEd, finalEn);
- final_energy = finalEd + finalEn;
- }
- }
1.4.1 SmoothCostOne
- float SmoothCostOne(uchar *pixel1, uchar *pixel2, int cn)
- {
- float tmp = 0.0;
- ; k < cn; k++)
- {
- float tm = int(pixel1[k]) - int(pixel2[k]);
- tmp += tm*tm;
- }
- tmp = tmp/(cn - (cn > ));//归一化为单通道, ppm图像的通道为4
- tmp = sqrt(tmp);
- return (tmp < opt_grad_thresh) ? (opt_smoothness*opt_grad_penalty) : opt_smoothness;
- }
1.4.2 SmoothCostAll
- void SmoothCostAll()
- { //calculate smoothness costs for DP and GC
- CShape sh = m_cost.m_shape;
- sh.nBands = ;//分为垂直和水平平滑代价
- m_smooth.ReAllocate(sh, false);
- int rows = sh.height;
- int cols = sh.width;
- int cn = m_reference.m_shape.nBands;
- char *im_data0_cr = m_reference.m_memStart;
- char *im_data0_dw = im_data0_cr + m_reference.m_rowSize;
- char *smooth_data0 = m_smooth.m_memStart;
- ; i < rows; i++, im_data0_cr += m_reference.m_rowSize, im_data0_dw += m_reference.m_rowSize, smooth_data0 += m_smooth.m_rowSize)
- {
- uchar *im_data1_cr = (uchar*)im_data0_cr;
- uchar *im_data1_dw = (uchar*)((i < rows - ) ? im_data0_dw : im_data0_cr);
- float *smooth_data1 = (float*)smooth_data0;
- ; j < cols; j++, im_data1_cr += cn, im_data1_dw += cn, smooth_data1 += )
- {
- smooth_data1[] = (i < rows - ) ? SmoothCostOne(im_data1_cr, im_data1_dw, cn) : ;
- smooth_data1[] = (j < cols - ) ? SmoothCostOne(im_data1_cr, im_data1_cr + cn, cn) : ;
- }
- }
- }
1.4.3 ComputeEnergy
- static void ComputeEnergy(CFloatImage& m_cost, CFloatImage& m_smooth, CIntImage& m_disparity, float& dataEnergy, float& smoothEnergy)
- {
- int cols = m_cost.m_shape.width;
- int rows = m_cost.m_shape.height;
- int cn1 = m_cost.m_shape.nBands;
- int cn2 = m_smooth.m_shape.nBands;
- float sum1 = 0.0f;
- float sum2 = 0.0f;
- char *disp_data0_cr = m_disparity.m_memStart;
- char *disp_data0_dw = disp_data0_cr + m_disparity.m_rowSize;
- char *datacost_data0 = m_cost.m_memStart;
- char *smoothcost_data0 = m_smooth.m_memStart;
- ; i < rows; i++, disp_data0_cr += m_disparity.m_rowSize, disp_data0_dw += m_disparity.m_rowSize, datacost_data0 += m_cost.m_rowSize, smoothcost_data0 += m_smooth.m_rowSize)
- {
- int *disp_data1_cr = (int*)disp_data0_cr;
- ) ? disp_data0_dw : disp_data0_cr);
- float *datacost_data1 = (float*)datacost_data0;
- float *smoothcost_data1 = (float*)smoothcost_data0;
- ; j < cols; j++, datacost_data1 += cn1, smoothcost_data1 += cn2)
- {
- int d = disp_data1_cr[j];
- sum1 = sum1 + datacost_data1[d];
- sum2 = sum2 + ((i < rows - && d != disp_data1_dw[j]) ? smoothcost_data1[] : );//水平平滑代价
- sum2 = sum2 + ((j < cols - && d != disp_data1_cr[j + ]) ? smoothcost_data1[] : );//垂直平滑代价
- }
- }
- dataEnergy = sum1;
- smoothEnergy = sum2;
- //float GC_scale = (1 << 30) / (256 * 256);
- //GC_scale = (1 << 30) / (sum1 + sum2);
- }
1.5 Refine
- void Refine()
- { //Refine the matching disparity to get a sub-pixel match
- if (opt_fn != eNoOpt) ScaleAndOffset(m_disparity, m_float_disparity, disp_step, disp_min);//无优化则跳过
- || disp_n < ) return; //不进行提纯
- ; i < m_cost.m_shape.height; i++)
- {
- , i, );
- , i, );
- , i, );
- ; j < m_cost.m_shape.width; j++, cost += disp_n)
- {
- //Get minimum, but offset by 1 from ends
- ) - (disp[j] == disp_n - );
- //Compute the equations of the parabolic fit
- ]; //a*(d-1)^2+b*(d-1)+c=c0
- float c1 = cost[d_min]; //a*(d )^2+b*(d )+c=c1
- ]; //a*(d+1)^2+b*(d+1)+c=c2
- float a = 0.5 * (c0 - 2.0 * c1 + c2); //解得a=c2-2*c1+c0, 对称轴=-b/2*a=d-(c2-c0)/(4*a)
- float b = 0.5 * (c2 - c0);
- if (a <= 0.0 || a < 0.5 * fabs(b)) continue;
- //Solve for minimum
- float x0 = -0.5 * b / a;
- float d_new = m_disp_step * (d_min + x0) + disp_min;
- fdisp[j] = d_new;
- }
- }
- }
2.代价聚合
2.1 BoxFiter
- {
- //与cv::boxFilter一致
- }
2.2 LASW
- void LASW(CFloatImage &srcCost, CFloatImage &dstCost, CByteImage &im0, CByteImage &im1, int xWidth, int yWidth, float proximity, float similarity, int color_space, int diff_iter)
- {
- int frm_total = im0.m_shape.width*im0.m_shape.height;
- int win_radius = (int)(xWidth / 2.0);
- int win_total = xWidth*yWidth;
- //0.分配所需空间
- double **Lab0 = new double *[frm_total];
- double **Lab1 = new double *[frm_total];
- float **rawCostf = new float *[frm_total];
- float **dstCostf = new float *[frm_total];
- float **sw0f = new float *[frm_total];
- float **sw1f = new float *[frm_total];
- ; i < frm_total; i++)
- {
- Lab0[i] = ];
- Lab1[i] = ];
- rawCostf[i] = new float[srcCost.m_shape.nBands];
- dstCostf[i] = new float[srcCost.m_shape.nBands];
- sw0f[i] = new float[win_total];
- sw1f[i] = new float[win_total];
- }
- //1.计算Lab图像并
- , index = ; i<im0.m_shape.height; i++)
- ; j<im0.m_shape.width; j++, index++)
- {
- double R, G, B;
- R = im0.Pixel(j, i, ((im0.m_shape.nBands - ) == ) ? : );
- G = im0.Pixel(j, i, ((im0.m_shape.nBands - ) == ) ? : );
- B = im0.Pixel(j, i, ((im0.m_shape.nBands - ) == ) ? : );
- RGB2Lab(R, G, B, Lab0[index][], Lab0[index][], Lab0[index][]);
- R = im1.Pixel(j, i, ((im1.m_shape.nBands - ) == ) ? : );
- G = im1.Pixel(j, i, ((im1.m_shape.nBands - ) == ) ? : );
- B = im1.Pixel(j, i, ((im1.m_shape.nBands - ) == ) ? : );
- RGB2Lab(R, G, B, Lab1[index][], Lab1[index][], Lab1[index][]);
- }
- //2.取得原始代价
- , index = ; i<srcCost.m_shape.height; i++)
- ; j < srcCost.m_shape.width; j++, index++)
- ; k<srcCost.m_shape.nBands; k++)
- rawCostf[index][k] = (float)srcCost.Pixel(j, i, k);
- //3.计算自适应权重
- calcASW(Lab0, sw0f, proximity, similarity, win_radius, im0.m_shape.width, im0.m_shape.height);
- calcASW(Lab1, sw1f, proximity, similarity, win_radius, im0.m_shape.width, im0.m_shape.height);
- //4.求和自适应权重
- ; u<diff_iter; u++)
- {
- aggrASW(sw0f, sw1f, rawCostf, dstCostf, srcCost.m_shape.nBands, win_radius, im0.m_shape.width, im0.m_shape.height);
- ; k<frm_total; k++)
- memcpy(rawCostf[k], dstCostf[k], sizeof(float)*srcCost.m_shape.nBands);
- }
- //5.返回结果
- , index = ; i<dstCost.m_shape.height; i++)
- ; j<dstCost.m_shape.width; j++, index++)
- ; k<dstCost.m_shape.nBands; k++)
- (())[k] = dstCostf[index][k];
- //6.删除分配的空间
- ; i < frm_total; i++)
- {
- delete Lab0[i];
- delete Lab1[i];
- delete rawCostf[i];
- delete dstCostf[i];
- delete sw0f[i];
- delete sw1f[i];
- }
- }
2.2.1 RGB2Lab
- void RGB2Lab(double &R, double &G, double &B, double &L, double &a, double &b)
- {
- double X = 0.412453*R + 0.357580*G + 0.189423*B;
- double Y = 0.212671*R + 0.715160*G + 0.072169*B;
- double Z = 0.019334*R + 0.119193*G + 0.950227*B;
- double Xo = 244.66128;
- double Yo = 255.0;
- double Zo = 277.63227;
- double tm1 = X / Xo; tm1 = (tm1 > 0.008856) ? pow(tm1, 0.333333333) : (7.787*tm1 + 0.137931034);
- double tm2 = Y / Yo; tm2 = (tm2 > 0.008856) ? pow(tm2, 0.333333333) : (7.787*tm2 + 0.137931034);
- double tm3 = Z / Zo; tm3 = (tm3 > 0.008856) ? pow(tm3, 0.333333333) : (7.787*tm3 + 0.137931034);
- L = * tm2 - ;
- a = * (tm1 - tm2);
- b = * (tm2 - tm3);
- }
2.2.2 calcASW
- void calcASW(double **Lab, float **SW, double proximity, double similarity, int win_radius, int cols, int rows)
- {
- int frm_total = cols*rows;
- * win_radius + )*( * win_radius + );
- //0.先清零
- ; i<frm_total; i++)
- memset(SW[i], , sizeof(float)*win_total);
- //1.计算自适用权重
- , index = ; i<rows; i++) //计算index点的领域点(共win_total个)相对index点的自适应权重,
- ; j<cols; j++, index++) //每个自适应权重占用SW的一个通道,索引越小的通道对应越左上角的点
- ; y <= win_radius; y++)//依次从左到右从上到下计算领域点相对于index点的自适应权重, k表示第k个领域点
- {
- int ii = i + y;
- || ii >= rows)//此行领域点越界,所以对应的权重都为0
- {
- for (int x = -win_radius; x <= win_radius; x++, k++)
- SW[index][k] = ;//可用menset加快处理
- continue;
- }
- for (int x = -win_radius; x <= win_radius; x++, k++)
- {
- ) //之前的循环已经计算则无需再计算
- continue;
- int jj = j + x;
- || jj >= cols)//此领域点越界,所以对应的权重为0
- {
- SW[index][k] = ;
- continue;
- }
- ];
- ];
- ];
- int index1 = ii*cols + jj;//领域点坐标
- ];
- ];
- ];
- double weight_prox = exp(-sqrt((double)(y*y + x*x)) / proximity);
- double weight_simi = exp(-sqrt((L1 - L2)*(L1 - L2) + (a1 - a2)*(a1 - a2) + (b1 - b2)*(b1 - b2)) / similarity);
- SW[index][k] = (float)(weight_prox*weight_simi);
- SW[index1][win_total - - k] = SW[index][k];//得到A相对O权重的同时也得到O相对A权重
- }
- }
- }
2.2.3 aggrASW
- void aggrASW(float **SW0, float **SW1, float **rawCost, float **dstCost, int cn, int win_radius, int cols, int rows)
- {
- , index = ; i<rows; i++)
- ; j<cols; j++, index++)
- ; d<cn; d++)//处理第d个通道
- {
- int index1 = j - d;//右图像上匹配点的坐标
- ) index1 = index1 + cols;
- else if (index1 >= cols) index1 = index1 - cols;
- index1 = i*cols + index1;//右图像上匹配点的坐标
- ;
- ;
- ; y <= win_radius; y++)//k表示第k个领域点
- {
- int ii = i + y;
- ) ii = ii + rows;
- if (ii >= rows) ii = ii - rows;
- for (int x = -win_radius; x <= win_radius; x++, k++)
- {
- int jj = j + x;
- ) jj = cols + jj;
- else if (jj >= cols) jj = jj - cols;
- double weight = SW0[index][k] * SW1[index1][k];//权重之积
- weight_sum = weight_sum + weight;
- int index_k = ii*cols + jj;//index_k表示第k个领域点
- cost_sum = cost_sum + rawCost[index_k][d] * weight;
- }
- }
- dstCost[index][d] = (float)(cost_sum / weight_sum);
- }
- }
3.视差优化
3.1 OptWTA
- void CStereoMatcher::OptWTA()
- {
- CShape sh = m_cost.Shape();
- int cols = sh.width;
- int rows = sh.height;
- ; i < rows; i++)
- {
- , i, );
- , i, );
- ; j < cols; j++, cost += disp_n)//m_cost的通道数为disp_n
- {
- ;
- ];
- ; d < disp_n; d++)
- if (cost[d] < best_cost)
- {
- best_cost = cost[d];
- best_disp = d;
- }
- disp[j] = best_disp;
- }
- }
- }
3.2 OptSO
- void OptSO()
- { // scanline optimization
- int cols = m_cost.m_shape.width;
- int rows = m_cost.m_shape.height;
- ;
- int rowElem = cols*disp_n;
- char *datacost_data0 = m_cost.m_memStart;
- char *smoothcost_data0 = m_smooth.m_memStart;
- char *disparity_data0 = m_disparity.m_memStart;
- float *sumcost_data0 = (float*)malloc(rowElem*sizeof(float));//存储每一列的每一视差(通道)的最优结果
- int *position_data0 = (int*)malloc(rowElem*sizeof(int));//存储每一列取得最优结果时对应的前一列哪个索引的视差(通道)
- ; i < rows; i++, datacost_data0 += m_cost.m_rowSize, smoothcost_data0 += m_smooth.m_rowSize, disparity_data0 += m_disparity.m_rowSize)//对每一行
- {
- float *datacost_data1 = (float*)datacost_data0;
- float *smoothcost_data1 = (float*)smoothcost_data0;
- int *position_data1 = position_data0;
- float *sumcost_data1 = sumcost_data0;
- //1.初始化第一列
- ; d < disp_n; d++)
- {
- position_data1[d] = -;
- sumcost_data1[d] = datacost_data1[d];
- }
- datacost_data1 += disp_n; position_data1 += disp_n; sumcost_data1 += disp_n;//定位第二列
- //2.用动态归划处理后续列
- ; j < cols; j++, datacost_data1 += disp_n, position_data1 += disp_n, sumcost_data1 += disp_n, smoothcost_data1 += )//对每一列
- {
- ; d1 < disp_n; d1++)//对每一通道(视差)
- {
- sumcost_data1[d1] = COST_MAX; //当前列当前通道的最小匹配代价
- position_data1[d1] = -; //最小匹配代价对应前一列的哪个通道(视差)
- ; d0 < disp_n; d0++)//对前一列的每一通道(视差)
- {
- float tm = datacost_data1[d1]; //当前列当前通道(视差)的原始代价
- tm = tm + sumcost_data1[d0 - disp_n];//前一列的每一通道(视差)的最小匹配代价
- tm = (d0 != d1) ? (tm + smoothcost_data1[]) : tm;//两通道(视差)间的平滑代价(第二通道才是水平方向的平滑代价)
- if (tm < sumcost_data1[d1])
- {
- sumcost_data1[d1] = tm;
- position_data1[d1] = d0;
- }
- }
- }
- }
- //3.在尾列查看最优结果(指针来源与前面不相关)
- position_data1 -= disp_n;
- sumcost_data1 -= disp_n;
- float best_cost = COST_MAX;
- ;
- ; d < disp_n; d++)
- if (sumcost_data1[d] < best_cost)
- {
- best_cost = sumcost_data1[d];
- best_disp = d;
- }
- //4.回溯(从尾列到首列)
- int *disparity_data1 = (int*)disparity_data0;
- ; x--, position_data1 -= disp_n)
- {
- disparity_data1[x] = best_disp;
- best_disp = position_data1[best_disp];
- }
- }
- free(sumcost_data0);
- free(position_data0);
- }
3.3 OptDP
- void OptDP()
- { //dynamic programming stereo (Intille and Bobick, no GCPs)
- float ocl = opt_occlusion_cost;
- float ocr = opt_occlusion_cost;
- ; // marker for occluded pixels (use 0 if you want to leave occluded pixels black)
- int cols = m_cost.m_shape.width;
- int rows = m_cost.m_shape.height;
- ] = { , , , , , , };//前一点的状态
- ] = { , , , , , , };//当前点的状态
- ;//每点的基元数=通道数*状态数
- , up = ;
- ] = { left, left, diag, diag, up, up, left };//不同状态时最优的前一点的位置与当前点的跨度
- , dup = ;
- ] = { dleft, dleft, ddiag, ddiag, dup, dup, dleft };//不同状态时视差的跨度
- ] = { , , , , , , }; //视差为0时没有左下角的前一点
- ] = { , , , , , , }; //视差为max没有同列的上一点
- int rowElem = cols * colElem;
- char *datacost_data0 = m_cost.m_memStart;
- char *smoothcost_data0 = m_smooth.m_memStart;
- ) * m_disparity.m_pixSize;//视差是从最后列开始计算的
- int *position_data0 = (int*)malloc(rowElem*sizeof(int));//存储每一列取得最优结果时对应的前一列哪个索引的视差(通道)
- float *sumcost_data0 = (float*)malloc(rowElem*sizeof(float));//存储每一列的每一视差(通道)的最优结果
- )*colElem;
- )*colElem;
- ; i < rows; i++, datacost_data0 += m_cost.m_rowSize, smoothcost_data0 += m_smooth.m_rowSize, disparity_data0 += m_disparity.m_rowSize)
- {
- float *datacost_data1 = (float*)datacost_data0;
- float *smoothcost_data1 = (float*)smoothcost_data0;
- int *position_data1 = (int*)position_data0;
- float *sumcost_data1 = (float*)sumcost_data0;
- //1.初始化第一列(每列有disp_n个通道(视差)而每个视差又有3个状态)
- {
- float *datacost_data2 = datacost_data1;
- int *position_data2 = position_data1;
- float *sumcost_data2 = sumcost_data1;
- ; d < disp_n; d++, datacost_data2++, position_data2 += , sumcost_data2 += )
- { //强制第一个点是非遮挡的
- position_data2[] = ;
- position_data2[] = -;
- position_data2[] = -;
- sumcost_data2[] = datacost_data2[];
- sumcost_data2[] = COST_MAX;
- sumcost_data2[] = COST_MAX;
- }
- datacost_data1 += disp_n; position_data1 += colElem; sumcost_data1 += colElem;//定位到第二列
- }
- //2.用动态归划处理后续列
- ; j < cols; j++, datacost_data1 += disp_n, smoothcost_data1 += , position_data1 += colElem, sumcost_data1 += colElem)//对每一列
- {
- ;//先定位到第二列的最后一个通道,因为要从最后个通道开始处理
- float *smoothcost_data2 = smoothcost_data1;//平滑代价只与列相关而与通道无关
- ;//先定位到第二列的最后一个通道,因为要从最后个通道开始处理
- ;//从最后个通道开始处理是因为m→R和r→R时处理当前通道时要用到下一通道的数据
- ; d1 >= ; d1--, datacost_data2--, position_data2 -= , sumcost_data2 -= ) //对每一通道(视差)
- {
- sumcost_data2[] = COST_MAX;//当前列当前通道第0状态的最小匹配代价
- sumcost_data2[] = COST_MAX;//当前列当前通道第1状态的最小匹配代价
- sumcost_data2[] = COST_MAX;//当前列当前通道第2状态的最小匹配代价
- position_data2[] = -; //第0状态最小匹配代价对应前一列的哪个通道(视差)
- position_data2[] = -; //第1状态最小匹配代价对应前一列的哪个通道(视差)
- position_data2[] = -; //第2状态最小匹配代价对应前一列的哪个通道(视差)
- ; t < ; t++)
- {
- && border0[t]) || (d1 == disp_n - && border1[t])) continue;//前一点不存在
- int pre_state = state0[t];
- int cur_state = state1[t];
- int pre_pos = steps[t] + pre_state;
- ? ocl : (cur_state == ? ocr : datacost_data2[]));//当前列当前通道(视差)的原始代价
- tm = tm + sumcost_data2[pre_pos];//前一列的每一通道(视差)的每一状态的最小匹配代价
- tm = (t == || t == ) ? (tm + smoothcost_data2[]) : tm;//平滑代价(从遮挡到匹配时)//第二通道才是水平方向的平滑代价
- if (tm < sumcost_data2[cur_state])
- {
- sumcost_data2[cur_state] = tm;
- position_data2[cur_state] = t;
- }
- }
- }
- }
- //3.在尾列查看最优结果(指针来源与前面不相关)
- float best_cost = COST_MAX;
- ;
- ;//只考虑左右图像都可见的状态
- {
- float *sumcost_data2 = sumcost_data1_endcol;//因为在遍历通道所以用data2
- ; d < disp_n; d++, sumcost_data2 += )
- if (sumcost_data2[best_state] < best_cost)
- {
- best_cost = sumcost_data2[best_state];
- best_disp = d;
- }
- }
- //4.回溯(从尾列到首列)(指针来源与前面不相关)
- position_data1 = position_data1_endlcol + best_disp * + best_state;//因为在遍历列所以用data1
- int *disparity_data1 = (int*)disparity_data0;
- while (position_data1 >= position_data0)
- {
- int pos = *position_data1;
- int current_state = state1[pos];
- int prev_state = state0[pos];
- *disparity_data1 = (current_state == ) ? best_disp : occ;
- int stride = steps[pos] - current_state + prev_state;
- position_data1 += stride;
- best_disp += disp_step[pos];
- )
- {
- best_disp += disp_n;
- disparity_data1--;
- }
- }
- }
- free(sumcost_data0);
- free(position_data0);
- //填充遮挡点(可单独写成函数)
- )
- {
- char *disp_data0 = m_disparity.m_memStart;
- ; i < rows; i++, disp_data0 += m_disparity.m_rowSize)
- {
- int *disp_data1 = (int*)disp_data0;
- //找到第一个非遮掩点
- int nonocc;
- ; j < cols; j++)
- if (disp_data1[j] != occ)
- {
- nonocc = disp_data1[j];
- break;
- }
- //除最左边的遮挡点外用与之右相邻的非遮挡点填充外, 其余遮挡点都用与之左相邻的非遮挡点填充
- ; j < cols; j++)
- {
- int d = disp_data1[j];
- if (d == occ)
- disp_data1[j] = nonocc;
- else
- nonocc = d;
- }
- }
- }
- }
8.杂项函数
8.1 BirchfieldTomasiMinMax
- void BirchfieldTomasiMinMax(int* buffer, int* min, int* max, int cols, int cn)
- {
- int cur, pre, nex;
- //第一个值
- cur = buffer[];
- pre = (buffer[] + buffer[] + ) / ;
- nex = (buffer[] + buffer[] + ) / ;
- min[] = __min(cur, __min(pre, nex));
- max[] = __max(cur, __max(pre, nex));
- //中间的值
- ; i < cols - ; i++)
- {
- cur = buffer[i];
- pre = (buffer[i] + buffer[i - ] + ) / ;
- nex = (buffer[i] + buffer[i + ] + ) / ;
- min[i] = __min(cur, __min(pre, nex));
- max[i] = __max(cur, __max(pre, nex));
- }
- //最后个值
- cur = buffer[cols - ];
- pre = (buffer[cols - ] + buffer[cols - ] + ) / ;
- nex = (buffer[cols - ] + buffer[cols - ] + ) / ;
- min[cols - ] = __min(cur, __min(pre, nex));
- max[cols - ] = __max(cur, __max(pre, nex));
- }
9. Image.h添加
(1)将所有private及protected成员变成public
(2)添加如下代码:
- #include <opencv2/opencv.hpp>
- using namespace cv;//将所有权限改为public
- template <class T> Mat ImgToMat(CImageOf<T> *src)
- {
- Mat dst;
- const char *depth = src->m_pTI->name();
- )
- {
- dst = Mat(src->m_shape.height, src->m_shape.width, CV_8UC(src->m_shape.nBands));
- ; k < src->m_shape.nBands; k++)
- ; i < src->m_shape.height; i++)
- ; j < src->m_shape.width; j++)
- *((unsigned char*)(dst.data + i*dst.step + j*dst.elemSize() + k*dst.elemSize1())) = *((unsigned char*)(src->m_memStart + i*src->m_rowSize + j*src->m_pixSize + k*src->m_bandSize));
- }
- )
- {
- dst = Mat(src->m_shape.height, src->m_shape.width, CV_8SC(src->m_shape.nBands));
- ; k < src->m_shape.nBands; k++)
- ; i < src->m_shape.height; i++)
- ; j < src->m_shape.width; j++)
- *((char*)(dst.data + i*dst.step + j*dst.elemSize() + k*dst.elemSize1())) = *((char*)(src->m_memStart + i*src->m_rowSize + j*src->m_pixSize + k*src->m_bandSize));
- }
- )
- {
- dst = Mat(src->m_shape.height, src->m_shape.width, CV_16UC(src->m_shape.nBands));
- ; k < src->m_shape.nBands; k++)
- ; i < src->m_shape.height; i++)
- ; j < src->m_shape.width; j++)
- *((unsigned short*)(dst.data + i*dst.step + j*dst.elemSize() + k*dst.elemSize1())) = *((unsigned short*)(src->m_memStart + i*src->m_rowSize + j*src->m_pixSize + k*src->m_bandSize));
- }
- )
- {
- dst = Mat(src->m_shape.height, src->m_shape.width, CV_16SC(src->m_shape.nBands));
- ; k < src->m_shape.nBands; k++)
- ; i < src->m_shape.height; i++)
- ; j < src->m_shape.width; j++)
- *((short*)(dst.data + i*dst.step + j*dst.elemSize() + k*dst.elemSize1())) = *((short*)(src->m_memStart + i*src->m_rowSize + j*src->m_pixSize + k*src->m_bandSize));
- }
- )
- {
- dst = Mat(src->m_shape.height, src->m_shape.width, CV_32FC(src->m_shape.nBands));
- ; k < src->m_shape.nBands; k++)
- ; i < src->m_shape.height; i++)
- ; j < src->m_shape.width; j++)
- *((float*)(dst.data + i*dst.step + j*dst.elemSize() + k*dst.elemSize1())) = *((float*)(src->m_memStart + i*src->m_rowSize + j*src->m_pixSize + k*src->m_bandSize));
- }
- )
- {
- dst = Mat(src->m_shape.height, src->m_shape.width, CV_32SC(src->m_shape.nBands));
- ; k < src->m_shape.nBands; k++)
- ; i < src->m_shape.height; i++)
- ; j < src->m_shape.width; j++)
- *((int*)(dst.data + i*dst.step + j*dst.elemSize() + k*dst.elemSize1())) = *((int*)(src->m_memStart + i*src->m_rowSize + j*src->m_pixSize + k*src->m_bandSize));
- }
- )
- {
- dst = Mat(src->m_shape.height, src->m_shape.width, CV_64FC(src->m_shape.nBands));
- ; k < src->m_shape.nBands; k++)
- ; i < src->m_shape.height; i++)
- ; j < src->m_shape.width; j++)
- *((double*)(dst.data + i*dst.step + j*dst.elemSize() + k*dst.elemSize1())) = *((double*)(src->m_memStart + i*src->m_rowSize + j*src->m_pixSize + k*src->m_bandSize));
- }
- return dst;
- }
- template <class T> CImageOf<T> MatToImg(Mat* src)
- {
- CImageOf<T> dst;
- CShape shape(src->cols, src->rows, src->channels());
- dst.ReAllocate(shape);
- const char *depth = dst.m_pTI->name();
- )
- {
- ; k < dst.m_shape.nBands; k++)
- ; i < dst.m_shape.height; i++)
- ; j < dst.m_shape.width; j++)
- *((unsigned char*)(dst.m_memStart + i*dst.m_rowSize + j*dst.m_pixSize + k*dst.m_bandSize)) = *((unsigned char*)(src->data + i*src->step + j*src->elemSize() + k*src->elemSize1()));
- }
- )
- {
- ; k < dst.m_shape.nBands; k++)
- ; i < dst.m_shape.height; i++)
- ; j < dst.m_shape.width; j++)
- *((char*)(dst.m_memStart + i*dst.m_rowSize + j*dst.m_pixSize + k*dst.m_bandSize)) = *((char*)(src->data + i*src->step + j*src->elemSize() + k*src->elemSize1()));
- }
- )
- {
- ; k < dst.m_shape.nBands; k++)
- ; i < dst.m_shape.height; i++)
- ; j < dst.m_shape.width; j++)
- *((unsigned short*)(dst.m_memStart + i*dst.m_rowSize + j*dst.m_pixSize + k*dst.m_bandSize)) = *((unsigned short*)(src->data + i*src->step + j*src->elemSize() + k*src->elemSize1()));
- }
- )
- {
- ; k < dst.m_shape.nBands; k++)
- ; i < dst.m_shape.height; i++)
- ; j < dst.m_shape.width; j++)
- *((short*)(dst.m_memStart + i*dst.m_rowSize + j*dst.m_pixSize + k*dst.m_bandSize)) = *((short*)(src->data + i*src->step + j*src->elemSize() + k*src->elemSize1()));
- }
- )
- {
- ; k < dst.m_shape.nBands; k++)
- ; i < dst.m_shape.height; i++)
- ; j < dst.m_shape.width; j++)
- *((float*)(dst.m_memStart + i*dst.m_rowSize + j*dst.m_pixSize + k*dst.m_bandSize)) = *((float*)(src->data + i*src->step + j*src->elemSize() + k*src->elemSize1()));
- }
- )
- {
- ; k < dst.m_shape.nBands; k++)
- ; i < dst.m_shape.height; i++)
- ; j < dst.m_shape.width; j++)
- *((int*)(dst.m_memStart + i*dst.m_rowSize + j*dst.m_pixSize + k*dst.m_bandSize)) = *((int*)(src->data + i*src->step + j*src->elemSize() + k*src->elemSize1()));
- }
- )
- {
- ; k < dst.m_shape.nBands; k++)
- ; i < dst.m_shape.height; i++)
- ; j < dst.m_shape.width; j++)
- *((double*)(dst.m_memStart + i*dst.m_rowSize + j*dst.m_pixSize + k*dst.m_bandSize)) = *((double*)(src->data + i*src->step + j*src->elemSize() + k*src->elemSize1()));
- }
- return dst;
- }
- template <class T> void saveXML(string name, CImageOf<T>* src)
- {
- Mat dst = ImgToMat<T>(src);
- FileStorage fs;
- fs.open("./../TestData/" + name, FileStorage::WRITE);
- fs << "mat" << dst;
- fs.release();
- }
- template <class T> void saveXML(string name, CImageOf<T>* src, int count)
- {
- vector<Mat> dst;
- ; i<count; i++)
- dst.push_back(ImgToMat<T>(&src[i]));
- FileStorage fs;
- fs.open("./../TestData/" + name, FileStorage::WRITE);
- fs << "vectorMat" << dst;
- fs.release();
- }
立体匹配:关于理解middlebury提供的立体匹配代码后的精减的更多相关文章
- 立体匹配:关于Middlebury提供的源码的简化使用
Middlebury提供的源码,虽然花了不到一个小时就运行起来啦.但说实话,它那循环读取脚本命令来执行算法真是让我费了不少头脑,花了近三天时间,我才弄明白了它的运行机制.你说,我就想提取一下算法,你给 ...
- 立体匹配:关于Middlebury提供的源码的简化后的结构
- 深入理解Object提供的阻塞和唤醒API
深入理解Object提供的阻塞和唤醒API 前提 前段时间花了大量时间去研读JUC中同步器AbstractQueuedSynchronizer的源码实现,再结合很久之前看过的一篇关于Object提供的 ...
- 通过Webstorm上传代码到Github、更新代码后同步到github及克隆github代码到本地的方法
导读: Github做为IT爱好者分享代码的一个知名的平台,广受大家喜欢,那么我们平时该怎么将自己写的代码上传到github上面保存并且提供给其他人参考? 我想方法不外乎如下几个: 1.直接在gith ...
- Gitlab利用Webhook实现Push代码后的jenkins自动构建
之前部署了Gitlab的代码托管平台和Jenkins的代码发布平台.通常是开发后的代码先推到Gitlab上管理,然后在Jenkins里通过脚本构建代码发布.这种方式每次在发版的时候,需要人工去执行je ...
- Git克隆代码后更新代码上传至服务器
首先在本地新建一个文件夹,鼠标右键点击Git clone(熟悉命令的可以直接在Git Bsah Here 里输入命令进行克隆), 点击后在弹框中输入服务器url后点击ok ...
- Gitlab使用Webhook实现Push代码后的jenkins自动构建
本文出自https://www.cnblogs.com/kevingrace/p/6479813.html 怕以后找不到,所以先写到自己博客中 Gitlab利用Webhook实现Push代码后的jen ...
- Eclipse中避免修改后台代码后手动install和重启
之前每次修改maven多模块项目后都得重新执行mvn install ,install完还得重启jetty/tomcat服务器,非常浪费 时间,其实修改代码后可以不用执行install,也不用 ...
- 更改html代码后网页不更新
写了一个非常简单的 html 页面,只有简单的跳转功能,但是在 Eclipse 下更改代码后用 chrome 浏览器打开时还是显示原来的网页.开始我以为是网页有错误或者有不规范的地方,因为我编写的是 ...
随机推荐
- wikioi 1075 明明的随机数
/*============================================================ 1075 明明的随机数 题目描述 Description 明明想在学校中请 ...
- 【转】jQuery选择器总结
jQuery 的选择器可谓之强大无比,这里简单地总结一下常用的元素查找方法 $("#myELement") 选择id值等于myElement的元素,id值不能重复在文档中 ...
- C# toString()转换详细(转)
文章转自:http://blog.csdn.net/xiaoguang44/article/details/6988418 字符型转换为字符串 // C 货币 2.5.ToString("C ...
- 制作OS X 10.10.3启动安装U盘
http://www.cnblogs.com/Bob-wei/p/4471407.html 1.获得“Install OS X Yosemite.app” 2.准备一个8GB的U盘,用磁盘工具“抹掉” ...
- Jquery ajax提交表单几种方法详解
[导读] 在jquery中ajax提交表单有post与get方式,在使用get方式时我们可以直接使用ajax 序列化表单$( 表单ID) serialize();就行了,下面我来介绍两个提交表单数据的 ...
- Struts2 - Interceptor中取得ActionName、Namespace、Method
在Struts2的Interceptor中取得当前执行对应的ActionName.Namespace.Method方法: 可以使用: System.out.println(invocation.get ...
- bzoj1173: [Balkan2007]Point
Description 给出N个三维空间上的点. 问有多少条直线,这些直线上至少有三个点. Input 第一行给出数字N,N在[4,1000] 下面N行,每行三个数字,用于描述点的坐标,其值在[-10 ...
- cgic 写CGI程序
CGIC是C语言CGI库函数,用于编写CGI程序 CGIC 主要完成以下功能: * 对数据进行语法分析 * 接收以 GET 和 PSOT 两种方式发送的数据 * 把 FORM 中的不同域连接成连续的串 ...
- CXF发布restful WebService的入门例子(服务器端)
研究了两天CXF对restful的支持. 现在,想实现一个以 http://localhost:9999/roomservice 为入口, http://localhost:9999/roomse ...
- 一. Logback与p6spy
一. LogBack配置 配置pom.xml <dependency> <groupId>org.slf4j</groupId> <artifactId> ...