Linux free -m 详细说明
Linux是如何管理内存的
在Linux里(别的系统也差不多),内存有物理内存和虚拟内存之说,物理内存是什么自然无需解释,虚拟内存实际是物理内存的抽象,多数情况下,出于方便性的考虑,程序访问的都是虚拟内存地址,然后操作系统会把它翻译成物理内存地址。
很多人会把虚拟内存和Swap混为一谈,实际上Swap只是虚拟内存引申出的一种技术而已:操作系统一旦物理内存不足,为了腾出内存空间存放新内容,就会把当前物理内存中的内容放到交换分区里,稍后用到的时候再取回来,需要注意的是,Swap的使用可能会带来性能问题,偶尔为之无需紧张,糟糕的是物理内存和交换分区频繁的发生数据交换,这被称之为Swap颠簸,一旦发生这种情况,先要明确是什么原因造成的,如果是内存不足就好办了,加内存就可以解决,不过有的时候即使内存充足也可能会出现这种问题,
比如MySQL就有可能出现这样的情况,解决方法是限制使用
Swap: shell> sysctl -w vm.swappiness=0
一、free命令
free命令由procps.*.rpm提供(在Redhat系列的OS上)。free命令的所有输出值都是从/proc/meminfo中读出的。
在系统上可能有meminfo(2)这个函数,它就是为了解析/proc/meminfo的。procps这个包自己实现了meminfo()这个函数。可以下载一个procps的tar包看看具体实现,现在最新版式3.2.8。
二、解释一下Linux上free命令的输出
下面是free的运行结果,一共有4行。为了方便说明,我加上了列号。这样可以把free的输出看成一个二维数组FO(Free Output)。例如:
- FO[2][1] = 24677460
- FO[3][2] = 10321516
free的输出一共有四行,第四行为交换区的信息,分别是交换的总量(total),使用量(used)和有多少空闲的交换区(free),这个比较清楚,不说太多。
free输出地第二行和第三行是比较让人迷惑的。这两行都是说明内存使用情况的。第一列是总量(total),第二列是使用量(used),第三列是可用量(free)。
第2和3行区别:
- 第二行(mem)的used/free与第三行(-/+ buffers/cache) used/free的区别。 这两个的区别在于使用的角度来看,第一行是从OS的角度来看,因为对于OS,buffers/cached 都是属于被使用,所以他的可用内存是16176KB,已用内存是3250004KB,其中包括,内核(OS)使用+Application(X, oracle,etc)使用的+buffers+cached。
- 第三行所指的是从应用程序角度来看,对于应用程序来说,buffers/cached 是等于可用的,因为buffer/cached是为了提高文件读取的性能,当应用程序需在用到内存的时候,buffer/cached会很快地被回收。
第二行的输出是从操作系统(OS)来看的。也就是说,从OS的角度来看,计算机上一共有:
FO[2][4]表示被几个进程共享的内存的,现在已经deprecated,其值总是0(当然在一些系统上也可能不是0,主要取决于free命令是怎么实现的)。
FO[2][5]表示被OS buffer住的内存。FO[2][6]表示被OS cache的内存。在有些时候buffer和cache这两个词经常混用。不过在一些比较低层的软件里是要区分这两个词的,看老外的洋文:
- A buffer is something that has yet to be "written" to disk.
- A cache is something that has been "read" from the disk and stored for later use.
也就是说buffer是用于存放要输出到disk(块设备)的数据的,而cache是存放从disk上读出的数据。这二者是为了提高IO性能的,并由OS管理。
Linux和其他成熟的操作系统(例如windows),为了提高IO read的性能,总是要多cache一些数据,这也就是为什么FO[2][6](cached memory)比较大,而FO[2][3]比较小的原因。我们可以做一个简单的测试:
- 释放掉被系统cache占用的数据;
echo 3>/proc/sys/vm/drop_caches
- 读一个大文件,并记录时间;
- 关闭该文件;
- 重读这个大文件,并记录时间;
第二次读应该比第一次快很多。原来我做过一个BerkeleyDB的读操作,大概要读5G的文件,几千万条记录。在我的环境上,第二次读比第一次大概可以快9倍左右。
free输出的第三行是从一个应用程序的角度看系统内存的使用情况。
- 对于FO[3][2],即-buffers/cache,表示一个应用程序认为系统被用掉多少内存;
- 对于FO[3][3],即+buffers/cache,表示一个应用程序认为系统还有多少内存;
因为被系统cache和buffer占用的内存可以被快速回收,所以通常FO[3][3]比FO[2][3]会大很多。
等式:
- total[2][1] = 系统used[2][2] + 系统free[2][3]
- FO[3][2] = FO[2][2] - FO[2][5] - FO[2][6](应用已使用内存=系统used[2][2]-buffers [2][5] - cached [2][6])
- FO[3][3] = FO[2][3] + FO[2][5] + FO[2][6](应用可用内存=系统free [2][3] +buffers [2][5] +cached [2][6])
之所以这样是因为每当我们操作文件的时候,Linux都会尽可能的把文件缓存到内存里,这样下次访问的时候,就可以直接从内存中取结果,所以cached一栏的数值非常的大,不过不用担心,这部分内存是可回收的,操作系统会按照LRU算法淘汰冷数据。还有一个buffers,也是可回收的,不过它是保留给块设备使用的。所以有如下公式:
空闲内存=free+buffers+cached=total-used
示例:
例一:24677460KB物理内存,即FO[2][1] = 在这些物理内存中有23276064KB(即FO[2][2])被使用了 + 还用1401396KB(即FO[2][3])是可用的。
例二:可用内存 = 1401396KB(即FO[2][3])是可用的 + 870540KB buffers + 12084008KB cached。
三、解释什么时候内存会被交换
接下来解释什么时候内存会被交换,以及按什么方交换。 当可用内存少于额定值的时候,就会开会进行交换。
如何看额定值:
cat /proc/meminfo
[root@scs-2 tmp]# cat /proc/meminfo
MemTotal: 3266180 kB
MemFree: 17456 kB
Buffers: 111328 kB
Cached: 2664024 kB
SwapCached: 0 kB
Active: 467236 kB
Inactive: 2644928 kB
HighTotal: 0 kB
HighFree: 0 kB
LowTotal: 3266180 kB
LowFree: 17456 kB
SwapTotal: 2048276 kB
SwapFree: 1968116 kB
Dirty: 8 kB
Writeback: 0 kB
Mapped: 345360 kB
Slab: 112344 kB
Committed_AS: 535292 kB
PageTables: 2340 kB
VmallocTotal: 536870911 kB
VmallocUsed: 272696 kB
VmallocChunk: 536598175 kB
HugePages_Total: 0
HugePages_Free: 0
Hugepagesize: 2048 kB
用free -m查看的结果:
[root@scs-2 tmp]# free -m
total used free shared buffers cached
Mem: 3189 3173 16 0 107 2605
-/+ buffers/cache: 460 2729
Swap: 2000 78 1921
查看/proc/kcore文件的大小(内存镜像):
[root@scs-2 tmp]# ll -h /proc/kcore
-r-------- 1 root root 4.1G Jun 12 12:04 /proc/kcore
备注:
占用内存的测量
测量一个进程占用了多少内存,linux为我们提供了一个很方便的方法,/proc目录为我们提供了所有的信息,实际上top等工具也通过这里来获取相应的信息。
/proc/meminfo 机器的内存使用信息
/proc/pid/maps pid为进程号,显示当前进程所占用的虚拟地址。
/proc/pid/statm 进程所占用的内存
[root@localhost ~]# cat /proc/self/statm
654 57 44 0 0 334 0
输出解释
CPU 以及CPU0。。。的每行的每个参数意思(以第一行为例)为:
参数 解释 /proc//status
Size (pages) 任务虚拟地址空间的大小 VmSize/4
Resident(pages) 应用程序正在使用的物理内存的大小 VmRSS/4
Shared(pages) 共享页数 0
Trs(pages) 程序所拥有的可执行虚拟内存的大小 VmExe/4
Lrs(pages) 被映像到任务的虚拟内存空间的库的大小 VmLib/4
Drs(pages) 程序数据段和用户态的栈的大小 (VmData+ VmStk )4
dt(pages) 04
查看机器可用内存
/proc/28248/>free
total used free shared buffers cached
Mem: 1023788 926400 97388 0 134668 503688
-/+ buffers/cache: 288044 735744
Swap: 1959920 89608 1870312
我们通过free命令查看机器空闲内存时,会发现free的值很小。这主要是因为,在linux中有这么一种思想,内存不用白不用,因此它尽可能的cache和buffer一些数据,以方便下次使用。但实际上这些内存也是可以立刻拿来使用的。
所以 空闲内存=free+buffers+cached=total-used
Linux free -m 详细说明的更多相关文章
- 1008win7与虚拟机中的linux共享文件的(详细)方法
转自http://jingyan.baidu.com/article/ca00d56c74dde4e99eebcfd2.html 好东西一起分享 win7与虚拟机中的linux共享文件的(详细)方法 ...
- Window VNC远程控制LINUX:VNC详细配置介绍
Window VNC远程控制LINUX:VNC详细配置介绍 //---------------------------------------vnc linux下的详细配置 1.VNC的启动/停止/重 ...
- Linux目录树详细说明
Linux目录树详细说明 目录树的主要部分有root(/)./USR./var./home等等.下面是一个典型的linux目录结构如下: / 根目录 /bin 存放必要的命令 /boot 存放内核以及 ...
- Jenkins:VMware虚拟机Linux系统的详细安装和使用教程
jenkins:VMware虚拟机Linux系统的详细安装和使用教程 (一) 不是windows安装虚拟机可跳过 1.Windows安装VMware 2.VMware安装linux系统 3.windo ...
- linux开机启动详细流程图
linux开机启动详细流程图: 一.BIOS 加电自检当你按电源开关开机时,电脑会首先去启动BIOS(基本输入输出系统),BIOS一般是集成在主板上的.BIOS 的工作1.检测连接硬件,比如显卡,内存 ...
- 详细的linux目录结构详细介绍
详细的linux目录结构详细介绍 --树状目录结构图 下面红色字体为比较重要的目录 1./目录 目录 描述 / 第一层次结构的根,整个文件系统层次结构的根目录 /bin/ 需要在单用户模式可用的必要命 ...
- [转帖]linux中systemctl详细理解及常用命令
linux中systemctl详细理解及常用命令 2019年06月28日 16:16:52 思维的深度 阅读数 30 https://blog.csdn.net/skh2015java/article ...
- linux中systemctl详细理解及常用命令
linux中systemctl详细理解及常用命令 https://blog.csdn.net/skh2015java/article/details/94012643 一.systemctl理解 Li ...
- 使用autotools工具用configure、make、make install编译安装linux工程的详细步骤
使用autotools工具用configure.make.make install编译安装linux工程的详细步骤 转载tmxkwzy 最后发布于2016-11-24 10:20:15 阅读数 324 ...
- Linux 安装 Tomcat 详细教程
Linux 安装Tomcat详细步骤 1. 前往tomcat官网复制下载链接, tomcat官网地址:https://tomcat.apache.org/ 2. 进入到指定目录,使用 wget 命令下 ...
随机推荐
- ARM菜鸟:JLINK与JTAG的区别
调试ARM,要遵循ARM的调试接口协议,JTAG就是其中的一种.当仿真时,IAR.KEIL.ADS等都有一个公共的调试接口,RDI就是其中的一种,那么我们如何完成RDI-->ARM调试协议(JT ...
- Struts2笔记——通配符和动态方法调用
通配符映射 * 一个 Web应用可能有成百上千个 action 声明. 可以利用 struts提供的通配符映射机制把多个彼此相似的映射关系简化为一个映射关系 * 通配符映射规则 > 若 ...
- iOS 全屏布局
edgesForExtendedLayout属性用于替代wantsFullScreenLayout,控制页面显示的范围,默认值是UIRectEdgeAll automaticallyAdjustsSc ...
- http://biancheng.dnbcw.info/java/138631.html
http://biancheng.dnbcw.info/java/138631.html
- Spring中 @Autowired注解与@Resource注解的区别
Spring中 @Autowired注解与@Resource注解的区别在Spring 3.X中经常使用到@Autowired和@Resource进行装配.这两个注解的差异在何处???相同点:@Reso ...
- http://my.oschina.net/u/2007041/blog/508520
http://my.oschina.net/u/2007041/blog/508520
- ADB调试桥安装(方式二)
想使用ADB工具可以通过安装安卓SDK套件,然后通过SDK里面的adb工具连接手机进行调试, 然而这种方式安装起来多多少少还是有点麻烦,ADB调试桥安装(方式一). 另一种方式来的就更为舒服一些了,即 ...
- ACMer(转)
我所了解的ACMer主要分为以下几类: A类:天才型(这个在咱们学校基本不存在),所以就不用考虑了-_- ! B类:刷题很快,题数是最多的几个之一,但有一个习惯就是喜欢看题解,思考问题一想不出来了就想 ...
- POJ 1904 HDU 4685
这两道题差不多,POJ这道我很久以前就做过,但是比赛的时候居然没想起来.. POJ 这道题的题意是,N个王子每个人都有喜欢的公主,当他们选定一个公主结婚时,必须是的剩下的人也能找到他喜欢的公主结婚. ...
- ava中拦截器 过滤器 监听器都有什么区别
过滤器,是在java web中,你传入的request,response提前过滤掉一些信息,或者提前设置一些参数,然后再传入servlet或者struts2的action进行业务逻辑,比如过滤掉非法u ...