数字图像去噪典型算法及matlab实现
J=imnoise(I,'gaussian',0,0.005);%加入均值为0,方差为0.005的高斯噪声
subplot(2,3,1);imshow(I);
title('原始图像');
subplot(2,3,2); imshow(J);
title('加入高斯噪声之后的图像');
%采用MATLAB中的函数filter2对受噪声干扰的图像进行均值滤波
K1=filter2(fspecial('average',3),J)/255; %模板尺寸为3
K2=filter2(fspecial('average',5),J)/255;% 模板尺寸为5
K3=filter2(fspecial('average',7),J)/255; %模板尺寸为7
K4= filter2(fspecial('average',9),J)/255; %模板尺寸为9
subplot(2,3,3);imshow(K1);
title('改进后的图像1');
subplot(2,3,4); imshow(K2);
title('改进后的图像2');
subplot(2,3,5);imshow(K3);
title('改进后的图像3');
subplot(2,3,6);imshow(K4);
title('改进后的图像4');
h = fspecial(type)
h = fspecial(type,parameters)
参数type制定算子类型,parameters指定相应的参数,具体格式为:
type='average',为均值滤波,参数为n,代表模版尺寸,用向量表示,默认值为[3,3]。
type= 'gaussian',为高斯低通滤波器,参数有两个,n表示模版尺寸,默认值为[3,3],sigma表示滤波器的标准差,单位为像素,默认值为
type= 'laplacian',为拉普拉斯算子,参数为alpha,用于控制拉普拉斯算子的形状,取值范围为[0,1],默认值为0.2。
type= 'log',为拉普拉斯高斯算子,参数有两个,n表示模版尺寸,默认值为[3,3],sigma为滤波器的标准差,单位为像素,默认值为0.5
type= 'prewitt',为prewitt算子,用于边缘增强,无参数。
type= 'sobel',为著名的sobel算子,用于边缘提取,无参数。
type= 'unsharp',为对比度增强滤波器,参数alpha用于控制滤波器的形状,范围为[0,1],默认值为0.2。
J=imnoise(I,'gaussian',0,0.005); %加入均值为0,方差为0.005的高斯噪声
K2=wiener2(J,[3 3]); %对加噪图像进行二维自适应维纳滤波
K2=wiener2(J,[5 5]); %对加噪图像进行二维自适应维纳滤波
K2=wiener2(J,[7 7]); %对加噪图像进行二维自适应维纳滤波
K2=wiener2(J,[9 9]); %对加噪图像进行二维自适应维纳滤波
subplot(2,3,1);imshow(I);
title('原始图像');
subplot(2,3,2);imshow(J);
title('加噪图像');
subplot(2,3,3);imshow(K1);
title('恢复图像1');
subplot(2,3,4);imshow(K2);
title('恢复图像2');
subplot(2,3,5);imshow(K3);
title('恢复图像3');
subplot(2,3,6);imshow(K4);
title('恢复图像3');
J = imnoise(I,type)
J = imnoise(I,type,parameters)
其中J = imnoise(I,type)返回对原始图像I添加典型噪声的有噪图像J。
参数type和parameters用于确定噪声的类型和相应的参数。
下面的命令是对图像1.gif分别加入高斯噪声、椒盐噪声和乘性噪声,其结果如图所示:
J1=imnoise(I,'gaussian',0,0.02);
J2=imnoise(I,'salt & pepper',0.02);
J3=imnoise(I,'speckle',0.02);
运行效果见图2
I=imread('C:\Documents and Settings\Administrator\桌面\1.gif');
J=imnoise(I,'salt & pepper',0.02);
%h=ones(3,3)/9;%产生3*3的全1数组
%B=conv2(J,h);%卷积运算
K2=filter2(fspecial('average',3),J)/255; %均值滤波模板尺寸为3
K= medfilt2(J);%采用二维中值滤波函数medfilt2对受椒盐噪声干扰的图像滤波
K1=wiener2(J,[3 3]); %对加噪图像进行二维自适应维纳滤波
subplot(2,3,1);imshow(I);
title('原始图像');
subplot(2,3,2);imshow(J);
title('加噪图像');
subplot(2,3,3);imshow(K2);
title('均值滤波后的图像');
subplot(2,3,4);imshow(K);
title('中值滤波后的图像');
subplot(2,3,5);imshow(K1);
title('维纳滤波后的图像');
C = conv2(A,B)
C = conv2(A,B)返回矩阵A和B的二维卷积C。若A为ma×na的矩阵,B为mb×nb的矩阵,则C的大小为(ma+mb+1)×(na+nb+1)。
Y = filter2(h,X)
其中Y = filter2(h,X)返回图像X经算子h滤波后的结果,默认返回图像Y与输入图像X大小相同。例如:
其实filter2和conv2是等价的。MATLAB在计算filter2时先将卷积核旋转180度,再调用conv2函数进行计算。
Fspecial函数用于创建预定义的滤波算子,其语法格式为:
h = fspecial(type)
h = fspecial(type,parameters)
参数type制定算子类型,parameters指定相应的参数,具体格式为前文已有叙述。
ones(a,b)产生a行b列全1数组
ones(a)产生a行a列全1叔祖
J1=imnoise(I,'salt & pepper',0.004);
subplot(2,3,1);imshow(I);
title('原始图像');
subplot(2,3,2);imshow(J1);
title('加椒盐噪声后的图像');
J= ordfilt2(J1,5,ones(3,4));% 进行二维统计顺序过滤
subplot(2,3,3);imshow(J);
title('椒盐噪声滤波后的图像');
J2=imnoise(I,'gaussian',0,0.004);
subplot(2,3,4);imshow(J2);
title('加高斯噪声后的图像');
J3= ordfilt2(J2,5,ones(3,4));
subplot(2,3,5);imshow(J3);
title('高斯噪声滤波后的图像');
J=imnoise(I,'gaussian',0,0.005);
[c,l]=wavedec2(J,2,'sym4');
J1= wrcoef2('a',c,l,'sym4',1);
J2= wrcoef2('a',c,l,'sym4',2);
subplot(2,2,1);imshow(I);
title('原始图像');
subplot(2,2,2);imshow(J);
title('含噪图像');
subplot(2,2,3);imshow(J1,[]);
title('第一次去噪图像');
subplot(2,2,4);imshow(J2,[]);
title('第二次去噪图像');
I=im2double(I);
subplot(2,2,1);imshow(I);
title('原始图像');
J=imnoise(I,'gaussian',0,0.05);
subplot(2,2,2);imshow(J);
title('含噪图像');
thr=0.1;sorh='s';
crit='shannon';
keepapp=0;
J1=wpdencmp(J,sorh,3,'sym4',crit,thr,keepapp);
subplot(2,2,3);imshow(J1);
title('全局阈值去噪图像');
J2=medfilt2(J1);
subplot(2,2,4);imshow(J2);
title('第二次去噪图像');
Medfilt2函数的语法格式为:
B = medfilt2(A) 用3×3的滤波窗口对图像A进行中值滤波。
B = medfilt2(A,[m n]) 用指定大小为m×n的窗口对图像A进行中值滤波。
数字图像去噪典型算法及matlab实现的更多相关文章
- GMM算法的matlab程序
GMM算法的matlab程序 在“GMM算法的matlab程序(初步)”这篇文章中已经用matlab程序对iris数据库进行简单的实现,下面的程序最终的目的是求准确度. 作者:凯鲁嘎吉 - 博客园 h ...
- GMM算法的matlab程序(初步)
GMM算法的matlab程序 在https://www.cnblogs.com/kailugaji/p/9648508.html文章中已经介绍了GMM算法,现在用matlab程序实现它. 作者:凯鲁嘎 ...
- KFCM算法的matlab程序(用FCM初始化聚类中心)
KFCM算法的matlab程序(用FCM初始化聚类中心) 在“聚类——KFCM”这篇文章中已经介绍了KFCM算法,现在用matlab程序对iris数据库进行实现,用FCM初始化聚类中心,并求其准确度与 ...
- KFCM算法的matlab程序
KFCM算法的matlab程序 在“聚类——KFCM”这篇文章中已经介绍了KFCM算法,现在用matlab程序对iris数据库进行简单的实现,并求其准确度. 作者:凯鲁嘎吉 - 博客园 http:// ...
- FCM算法的matlab程序2
FCM算法的matlab程序2 在“FCM算法的matlab程序”这篇文章中已经用matlab程序对iris数据库进行实现,并求解准确度.下面的程序是另一种方法,是最常用的方法:先初始化聚类中心,在进 ...
- FCM算法的matlab程序
FCM算法的matlab程序 在“FCM算法的matlab程序(初步)”这篇文章中已经用matlab程序对iris数据库进行简单的实现,下面的程序最终的目的是求准确度. 作者:凯鲁嘎吉 - 博客园 h ...
- K-means算法的matlab程序
K-means算法的matlab程序 在“K-means算法的matlab程序(初步)”这篇文章中已经用matlab程序对iris数据库进行简单的实现,下面的程序最终的目的是求准确度. 作者:凯鲁嘎吉 ...
- FCM算法的matlab程序(初步)
FCM算法的matlab程序 在https://www.cnblogs.com/kailugaji/p/9648430.html文章中已经介绍了FCM算法,现在用matlab程序实现它. 作者:凯鲁嘎 ...
- K-means算法的matlab程序(初步)
K-means算法的matlab程序 在https://www.cnblogs.com/kailugaji/p/9648369.html 文章中已经介绍了K-means算法,现在用matlab程序实现 ...
随机推荐
- node-odata: ASP.NET WEB API OData的替代品
什么是 OData 协议? OData, 相信身为 .NET 程序员应该不为陌生, 尤其是它的实现: ASP.NET WEB API OData. 对于 OData, 官网上对其的定义是 OData ...
- HDU 4647 Another Graph Game 思路+贪心
官方题解: 若没有边权,则对点权从大到小排序即可.. 考虑边,将边权拆成两半加到它所关联的两个点的点权中即可. ..因为当两个人分别选择不同的点时,这一权值将互相抵消. #include <cs ...
- JavaScript —— 局部变量和全局变量
JS的全局变量有3种声明方式: 1.Function 外 var v_myVar; 2.Function 内 v_myVar; 3.window.v_myVar window.v_myVar 全局变量 ...
- poj - 3259 Wormholes (bellman-ford算法求最短路)
http://poj.org/problem?id=3259 农夫john发现了一些虫洞,虫洞是一种在你到达虫洞之前把你送回目的地的一种方式,FJ的每个农场,由n块土地(编号为1-n),M 条路,和W ...
- mtk Android 编译命令自定义--添加版本号
1. alps\build\core\Makefile文件:(参照CUSTOM_BUILD_VERNO) ifeq "" "$(SURPLUS_BUILD_VERNO)& ...
- hibernate自动生成映射文件
映射文件是O/R Mapping的关键,相当于控制中心.当数据库表较多时,手动配置该映射文件非常耗时.为了快速开发程序,使开发人员的注意力集中到业务逻辑上来,Hibernate官方提供的MiddleG ...
- SCSS(SASS、CSS)学习
看的这篇文章 http://www.frostsky.com/2014/07/sass-scss/ 写的还比较清晰 SASS是CSS3的一个扩展,增加了规则嵌套.变量.混合.选择器继承等等.通过使用命 ...
- Cocos2d-x 开发手记
1.所有的源文件统一新建到Classes里,否则无法找到源文件,这样也便于跨平台编译 2.绘图坐标系,与opengl采用相同坐标系,左下角为原点 纹理坐标系,以左上角为原点 3.最近有在学习C ...
- UVa 11636 (注意读题) Hello World!
这道题巨坑啊,样例中以-1结束输入的,所以我就天真的以为测试数据也是以-1结束输入的 其实人家原文中说: Input is terminated by a line containing a nega ...
- hdu4604 deque
题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=4604 思路:就是模拟一下,求每一个开始的非上升和非下降序列.然后求重复的数,由于求出来可能不会是我们想 ...