SPFA算法
SPFA算法
一.算法简介
SPFA(Shortest Path Faster Algorithm)算法是求单源最短路径的一种算法,它是Bellman-ford的队列优化,它是一种十分高效的最短路算法。
很多时候,给定的图存在负权边,这时类似Dijkstra等算法便没有了用武之地,而Bellman-Ford算法的复杂度又过高,SPFA算法便派上用场了。SPFA的复杂度大约是O(kE),k是每个点的平均进队次数(一般的,k是一个常数,在稀疏图中小于2)。
但是,SPFA算法稳定性较差,在稠密图中SPFA算法时间复杂度会退化。
实现方法:建立一个队列,初始时队列里只有起始点,在建立一个表格记录起始点到所有点的最短路径(该表格的初始值要赋为极大值,该点到他本身的路径赋为0)。然后执行松弛操作,用队列里有的点去刷新起始点到所有点的最短路,如果刷新成功且被刷新点不在队列中则把该点加入到队列最后。重复执行直到队列为空。
此外,SPFA算法还可以判断图中是否有负权环,即一个点入队次数超过N。
二.算法图解
给定一个有向图,求A~E的最短路。

源点A首先入队,并且AB松弛

扩展与A相连的边,B,C 入队并松弛。

B,C分别开始扩展,D入队并松弛

D出队,E入队并松弛。

E出队,此时队列为空,源点到所有点的最短路已被找到,A->E的最短路即为8

以上就是SPFA算法的过程。
三.算法模板
#include "bits/stdc++.h" using namespace std;
const int maxN = ;
struct Edge
{
int to , next , w ;
} e[ maxN ]; int n,m,cnt,p[ maxN ],Dis[ maxN ];
int In[maxN ];
bool visited[ maxN ]; void Add_Edge ( const int x , const int y , const int z )
{
e[ ++cnt ] . to = y ;
e[ cnt ] . next = p[ x ];
e[ cnt ] . w = z ;
p[ x ] = cnt ;
return ;
} bool Spfa(const int S)
{
int i,t,temp;
queue<int> Q;
memset ( visited , 0 , sizeof ( visited ) ) ;
memset ( Dis , 0x3f , sizeof ( Dis ) ) ;
memset ( In , 0 , sizeof ( In ) ) ; Q.push ( S ) ;
visited [ S ] = true ;
Dis [ S ] = 0 ; while( !Q.empty ( ) )
{
t = Q.front ( ) ;Q.pop ( ) ;visited [ t ] = false ;
for( i=p[t] ; i ; i = e[ i ].next )
{
temp = e[ i ].to ;
if( Dis[ temp ] > Dis[ t ] + e[ i ].w )
{
Dis[ temp ] =Dis[ t ] + e[ i ].w ;
if( !visited[ temp ] )
{
Q.push(temp);
visited[temp]=true;
if(++In[temp]>n)return false;
}
}
}
}
return true;
} int main ( )
{
int S , T ; scanf ( "%d%d%d%d" , &n , &m , &S , &T ) ;
for(int i= ; i<=m ; ++i )
{
int x , y , _ ;
scanf ( "%d%d%d" , &x , &y , &_ ) ;
Add_Edge ( x , y , _ ) ;
} if ( !Spfa ( S ) ) printf ( "FAIL!\n" ) ;
else printf ( "%d\n" , Dis[ T ] ) ; return ;
}
(完)
SPFA算法的更多相关文章
- 最短路径问题的Dijkstra和SPFA算法总结
Dijkstra算法: 解决带非负权重图的单元最短路径问题.时间复杂度为O(V*V+E) 算法精髓:维持一组节点集合S,从源节点到该集合中的点的最短路径已被找到,算法重复从剩余的节点集V-S中选择最短 ...
- [知识点]SPFA算法
// 此博文为迁移而来,写于2015年4月9日,不代表本人现在的观点与看法.原始地址:http://blog.sina.com.cn/s/blog_6022c4720102vx93.html 1.前言 ...
- SPFA算法学习笔记
一.理论准备 为了学习网络流,先水一道spfa. SPFA算法是1994年西南交通大学段凡丁提出,只要最短路径存在,SPFA算法必定能求出最小值,SPFA对Bellman-Ford算法优化的关键之处在 ...
- 用scheme语言实现SPFA算法(单源最短路)
最近自己陷入了很长时间的学习和思考之中,突然发现好久没有更新博文了,于是便想更新一篇. 这篇文章是我之前程序设计语言课作业中一段代码,用scheme语言实现单源最段路算法.当时的我,花了一整天时间,学 ...
- SPFA算法心得
SPFA算法是改进后的Bellman-Ford算法,只是速度更快,而且作为一个算法,它更容易理解和编写,甚至比Dijkstra和B-F更易读(当然,Floyd是另一回事了,再也没有比Floyd还好写的 ...
- 最短路径--SPFA 算法
适用范围:给定的图存在负权边,这时类似Dijkstra等算法便没有了用武之地,而Bellman-Ford算法的复杂度又过高,SPFA算法便派上用场了. 我们约定有向加权图G不存在负权回路,即最短路径一 ...
- Bellman-Ford & SPFA 算法——求解单源点最短路径问题
Bellman-Ford算法与另一个非常著名的Dijkstra算法一样,用于求解单源点最短路径问题.Bellman-ford算法除了可求解边权均非负的问题外,还可以解决存在负权边的问题(意义是什么,好 ...
- UVA 10000 Longest Paths (SPFA算法,模板题)
题意:给出源点和边,边权为1,让你求从源点出发的最长路径,求出路径长度和最后地点,若有多组,输出具有最小编号的最后地点. #include <iostream> #include < ...
- 最短路径算法之四——SPFA算法
SPAF算法 求单源最短路的SPFA算法的全称是:Shortest Path Faster Algorithm,该算法是西南交通大学段凡丁于1994年发表的. 它可以在O(kE)的时间复杂度内求出源点 ...
随机推荐
- Linux下pipe使用注意事项
转自:http://blog.yufeng.info/archives/1485 Linux下的pipe使用非常广泛, shell本身就大量用pipe来粘合生产者和消费者的. 我们的服务器程序通常会用 ...
- WebApiのエラーメッセージをどうカスタマイズです?
本来是发布在客户的Wiki上,所以就用日语写. ------------------------------------------------------------------------ Web ...
- Delphi之DLL知识学习1---什么是DLL
DLL(动态链接库)是程序模块,它包括代码.数据或资源,能够被其他的Windows 应用程序共享.DLL的主要特点之一是应用程序可以在运行时调入代码执行,而不是在编译时链接代码,因此,多个应用程序可以 ...
- Excel数据挖掘插件
Excel是大家非常熟悉的表格工具,借助它可以实现日程工作中最原始的数据处理的基本的功能,此外通过 SQL Server插件的支持,我们也可以在Excel中实现数据挖掘的功能. 此篇将先介绍Excel ...
- hdu 4055 递推
转自:http://blog.csdn.net/shiqi_614/article/details/7983298 题意:由数字1到n组成的所有排列中,问满足题目所给的n-1个字符的排列有多少个,如果 ...
- 避免在ASP.NET Core中使用服务定位器模式
(此文章同时发表在本人微信公众号"dotNET每日精华文章",欢迎右边二维码来关注.) 题记:服务定位器(Service Locator)作为一种反模式,一般情况下应该避免使用,在 ...
- Vector[C++]
// vector<int> vec; // for(int i = 0; i < 10; i++) // { // vec.push_back(5) ...
- AngularJS - 指令入门
指令,我将其理解为AngularJS操作HTML element的一种途径. 由于学习AngularJS的第一步就是写内置指令ng-app以指出该节点是应用的根节点,所以指令早已不陌生. 这篇日志简单 ...
- 2015腾讯web前端笔试题
1 请实现,鼠标点击页面中的任意标签,alert该标签的名称.(注意兼容性) 2 请指出一下代码的性能问题,并经行优化. var info="腾讯拍拍网(www.paipai.com)是 ...
- IM服务器的架构
一. 总的构架结构示意图: 如上图所示,目前系统总的分成六个模块, 分别为网络/协议解析模块,用户帐号管理模块,消息处理模块,动作处理模块,数据均衡处理模块,客户状态处理模块 . 正常流程应该这么实现 ...