Description

Berland has n cities, the capital is located in city s, and the historic home town of the President is in city t (s ≠ t). The cities are connected by one-way roads, the travel time for each of the road is a positive integer.

Once a year the President visited his historic home town t, for which his motorcade passes along some path from s to t (he always returns on a personal plane). Since the president is a very busy man, he always chooses the path from s to t, along which he will travel the fastest.

The ministry of Roads and Railways wants to learn for each of the road: whether the President will definitely pass through it during his travels, and if not, whether it is possible to repair it so that it would definitely be included in the shortest path from the capital to the historic home town of the President. Obviously, the road can not be repaired so that the travel time on it was less than one. The ministry of Berland, like any other, is interested in maintaining the budget, so it wants to know the minimum cost of repairing the road. Also, it is very fond of accuracy, so it repairs the roads so that the travel time on them is always a positive integer.

Input

The first lines contain four integers nms and t (2 ≤ n ≤ 105; 1 ≤ m ≤ 105; 1 ≤ s, t ≤ n) — the number of cities and roads in Berland, the numbers of the capital and of the Presidents' home town (s ≠ t).

Next m lines contain the roads. Each road is given as a group of three integers ai, bi, li (1 ≤ ai, bi ≤ nai ≠ bi; 1 ≤ li ≤ 106) — the cities that are connected by the i-th road and the time needed to ride along it. The road is directed from city ai to city bi.

The cities are numbered from 1 to n. Each pair of cities can have multiple roads between them. It is guaranteed that there is a path from sto t along the roads.

Output

Print m lines. The i-th line should contain information about the i-th road (the roads are numbered in the order of appearance in the input).

If the president will definitely ride along it during his travels, the line must contain a single word "YES" (without the quotes).

Otherwise, if the i-th road can be repaired so that the travel time on it remains positive and then president will definitely ride along it, print space-separated word "CAN" (without the quotes), and the minimum cost of repairing.

If we can't make the road be such that president will definitely ride along it, print "NO" (without the quotes).

Examples
input
6 7 1 6
1 2 2
1 3 10
2 3 7
2 4 8
3 5 3
4 5 2
5 6 1
output
YES
CAN 2
CAN 1
CAN 1
CAN 1
CAN 1
YES
input
3 3 1 3
1 2 10
2 3 10
1 3 100
output
YES
YES
CAN 81
input
2 2 1 2
1 2 1
1 2 2
output
YES
NO
Note

The cost of repairing the road is the difference between the time needed to ride along it before and after the repairing.

In the first sample president initially may choose one of the two following ways for a ride:1 → 2 → 4 → 5 → 6 or 1 → 2 → 3 → 5 → 6.

dijkstra找出从s出发的最短路和从t出发的最短路。

存边的时候正向和逆向分别存起来,并且在求最短路的同时计算到每个点的最短路数量。

d[0][i]表示s出发到i的最短路,d[1][i]表示t出发到i的最短路。每条边的权值为w。

则当w+d[0][u]+d[1][v]时说明是s到t的最短路上的边,如果是所有最短路都经过的边,则满足path[0][u]*path[1][v]==path[0][t]。

path是最短路的数量,因为可能爆long long,因此要取模,而且还不能是1000000007。

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
#define N 100005
#define M 5462617
#define inf 0x3f3f3f3f3f3f3f3fll
#define ll long long
#define add(u,v,w) e[++cnt]=(edge){v,head[0][u],w};head[0][u]=cnt;e[++cnt]=(edge){u,head[1][v],w};head[1][v]=cnt
using namespace std;
struct edge{
ll to,next,w;
}e[N<<];
struct road{
ll u,v,w;
}l[N];
struct qnode{
ll v,c;
bool operator <(const qnode &r)const{
return c>r.c;
}
};
ll n,m,s,t,u,v,w,d[][N],cnt,head[][N],b[][N],path[][N];
void dijkstra(int f){
int i,j,k,pr=f?t:s;
for(i=;i<=n;i++)d[f][i]=inf;
priority_queue<qnode> q;
d[f][pr]=;
q.push((qnode){pr,});
path[f][pr]=;
while(!q.empty()){
qnode u=q.top();
q.pop();
if(b[f][u.v])continue;
b[f][pr=u.v]=;
for(j=head[f][pr];j;j=e[j].next){
k=e[j].to;
if(d[f][pr]+e[j].w==d[f][k])
path[f][k]=(path[f][k]+path[f][pr])%M;
else if(d[f][pr]+e[j].w<d[f][k]){
d[f][k]=d[f][pr]+e[j].w;
q.push((qnode){k,d[f][k]});
path[f][k]=path[f][pr];
}
}
}
}
int main() {
int i,j;
cin>>n>>m>>s>>t;
for(i=;i<=m;i++){
scanf("%lld%lld%lld",&u,&v,&w);
add(u,v,w);
l[i]=(road){u,v,w};
}
dijkstra();
dijkstra();
for(i=;i<=m;i++)
{
u=l[i].u;
v=l[i].v;
w=l[i].w;
if(d[][u]+d[][v]+w==d[][t]){
if(path[][u]*path[][v]%M==path[][t])
puts("YES");
else if(w>)
puts("CAN 1");
else puts("NO");
}
else if(d[][u]+d[][v]+<d[][t])
printf("CAN %lld\n",d[][u]+d[][v]+w-d[][t]+);
else
puts("NO");
}
}

  

【CodeForces 567E】President and Roads(最短路)的更多相关文章

  1. Codeforces.567E.President and Roads(最短路 Dijkstra)

    题目链接 \(Description\) 给定一张有向图,求哪些边一定在最短路上.对于不一定在最短路上的边,输出最少需要将其边权改变多少,才能使其一定在最短路上(边权必须为正,若仍不行输出NO). \ ...

  2. Codeforces Round #Pi (Div. 2) E. President and Roads 最短路+桥

    题目链接: http://codeforces.com/contest/567/problem/E 题意: 给你一个带重边的图,求三类边: 在最短路构成的DAG图中,哪些边是必须经过的: 其他的(包括 ...

  3. Codeforces Round #Pi (Div. 2) 567E President and Roads ( dfs and similar, graphs, hashing, shortest paths )

    图给得很良心,一个s到t的有向图,权值至少为1,求出最短路,如果是一定经过的边,输出"YES",如果可以通过修改权值,保证一定经过这条边,输出"CAN",并且输 ...

  4. Codeforces Gym 100338C Important Roads 最短路+Tarjan找桥

    原题链接:http://codeforces.com/gym/100338/attachments/download/2136/20062007-winter-petrozavodsk-camp-an ...

  5. cf567E. President and Roads(最短路计数)

    题意 题目链接 给出一张有向图,以及起点终点,判断每条边的状态: 是否一定在最短路上,是的话输出'YES' 如果不在最短路上,最少减去多少权值会使其在最短路上,如果减去后的权值\(< 1\),输 ...

  6. Codeforces Round #Pi (Div. 2) E. President and Roads tarjan+最短路

    E. President and RoadsTime Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/567 ...

  7. Codeforces 806 D.Prishable Roads

    Codeforces 806 D.Prishable Roads 题目大意:给出一张完全图,你需要选取其中的一些有向边,连成一个树形图,树形图中每个点的贡献是其到根节点路径上每一条边的边权最小值,现在 ...

  8. Codeforces 191C Fools and Roads(树链拆分)

    题目链接:Codeforces 191C Fools and Roads 题目大意:给定一个N节点的数.然后有M次操作,每次从u移动到v.问说每条边被移动过的次数. 解题思路:树链剖分维护边,用一个数 ...

  9. codeforces 689 Mike and Shortcuts(最短路)

    codeforces 689 Mike and Shortcuts(最短路) 原题 任意两点的距离是序号差,那么相邻点之间建边即可,同时加上题目提供的边 跑一遍dijkstra可得1点到每个点的最短路 ...

随机推荐

  1. 如何自学Android

    看到很多人提问非科班该如何学习编程,其实科班也基本靠自学.有句话叫"师傅领进门修行靠个人",再厉害的老师能教你的东西都是很有限的,真正的修行还是要靠自己.博主本科是数学专业,虽研究 ...

  2. iOS中的存储方式

    1.Plist 1.1 了解沙盒 每个iOS应用都有自己的应用沙盒(应用沙盒就是文件系统目录),与其它文件系统隔离.应用必须呆在自己的沙盒里.其它应用不能访问该沙盒. 一个程序中所有的非代码文件都可以 ...

  3. iOS十六进制和字符串的相互转换

    转换代码,崩溃日志有些是十六进制 NSString *dictString = [dict JSONFragment];//组合成的 dictString==={"content" ...

  4. 64位MicrosoftOfficeWord加载EndnoteX7

    来源:http://jingyan.baidu.com/article/fcb5aff7a08036edaa4a71d0.html Win10 64bit 安装 Office2016 64bit 加载 ...

  5. 协程python

    python中协程 在引出协成概念之前先说说python的进程和线程. 进程: 进程是正在执行程序实例.执行程序的过程中,内核会讲程序代码载入虚拟内存,为程序变量分配空间,建立 bookkeeping ...

  6. Web服务器之iis,apache,tomcat三者之间的比较

    IIS-Apache-Tomcat的区别 IIS与Tomcat的区别 IIS是微软公司的Web服务器.主要支持ASP语言环境. Tomcat是Java Servlet 2.2和JavaServer P ...

  7. 扩展 easyui-tabs 插件 关闭标签页方法

    $.extend($.fn.tabs.methods,{ allTabs:function(jq){ var tabs = $(jq).tabs('tabs'); var all = []; all ...

  8. 前端见微知著番外篇:Bitbucket进行代码管控

    说道代码管控,一般都会提到TFS.Git等,但是在这里我们将要用到Bitbucket,其实其操作方式和Git基本上一样,但是和TFS则有很大的不同了.但是原理基本上都是一致的. 这里我不会过多的涉及到 ...

  9. 分享:关于之前锤子手机刷MIUI之后,现在有事跌宕起伏的刷回了Smartisan OS!

     序言: 距离上次把锤子手机刷成MIUI之后已经一个半月了,我是一个刷机党,一个半月足够让我适应一个系统,了解一个系统.刷机有风险,不过我愿意冒这个风险,因为兴趣,没别的.刷机之后,肯定是有问题的,没 ...

  10. VS2013无法链接到TFS(Visual studio online),错误TF31001,TF31002

    TF31002: Unable to connect to VisualStudio Online with VS 2013 but I can using web access - Windows ...