4519: [Cqoi2016]不同的最小割

Time Limit: 20 Sec  Memory Limit: 512 MB
Submit:
393  Solved: 239
[Submit][Status][Discuss]

Description

学过图论的同学都知道最小割的概念:对于一个图,某个对图中结点的划分将图中所有结点分成
两个部分,如果结点s,t不在同一个部分中,则称这个划分是关于s,t的割。对于带权图来说,将
所有顶点处在不同部分的边的权值相加所得到的值定义为这个割的容量,而s,t的最小割指的是在
关于s,t的割中容量最小的割。
而对冲刺NOI竞赛的选手而言,求带权图中两点的最小割已经不是什么难事了。我们可以把
视野放宽,考虑有N个点的无向连通图中所有点对的最小割的容量,共能得到N(N−1)
2个数值。
这些数值中互不相同的有多少个呢?这似乎是个有趣的问题。

Input

输入文件第一行包含两个数N,M,表示点数和边数。接下来M行,每行三个数u,v,w,
表示点u和点v(从1开始标号)之间有条边权值是w。
1<=N<=850 1<=M<=8500 1<=W<=100000

Output

输出文件第一行为一个整数,表示个数。

Sample Input

4 4
1 2 3
1 3 6
2 4 5
3 4
4

Sample Output

3

HINT

Source

Solution

跟上一题的做法很像,分治最小割

记录答案即可,最后排序看看有多少不同的即可.....

Code

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
#define maxn 1000
#define maxm 100010
int n,m,q,t,ans[maxn],tot,id[maxn],tmp[maxn];
struct Edgenode{int next,to,cap;}edge[maxm];
int head[maxn],cnt=;
void add(int u,int v,int w)
{cnt++; edge[cnt].to=v; edge[cnt].next=head[u]; head[u]=cnt; edge[cnt].cap=w;}
void insert(int u,int v,int w) {add(u,v,w); add(v,u,w);}
int dis[maxn],que[maxn<<],cur[maxn],S,T;
bool bfs()
{
memset(dis,-,sizeof(dis));
que[]=S; dis[S]=; int he=,ta=;
while (he<ta)
{
int now=que[he++];
for (int i=head[now]; i; i=edge[i].next)
if (edge[i].cap && dis[edge[i].to]==-)
dis[edge[i].to]=dis[now]+,que[ta++]=edge[i].to;
}
return dis[T]!=-;
}
int dfs(int loc,int low)
{
if (loc==T) return low;
int w,used=;
for (int i=cur[loc]; i; i=edge[i].next)
if (edge[i].cap && dis[edge[i].to]==dis[loc]+)
{
w=dfs(edge[i].to,min(low-used,edge[i].cap));
edge[i].cap-=w; edge[i^].cap+=w;
used+=w; if (edge[i].cap) cur[loc]=i;
if (used==low) return low;
}
if (!used) dis[loc]=-;
return used;
}
#define inf 0x7fffffff
int dinic()
{
int tmp=;
while (bfs())
{
for (int i=; i<=n; i++) cur[i]=head[i];
tmp+=dfs(S,inf);
}
return tmp;
}
void init()
{
cnt=;
memset(ans,,sizeof(ans));
memset(head,,sizeof(head));
}
bool visit[maxn];
void DFS(int x)
{
visit[x]=;
for (int i=head[x]; i; i=edge[i].next)
if (edge[i].cap && !visit[edge[i].to])
DFS(edge[i].to);
}
void work(int L,int R)
{
if (L==R) return;
for (int i=; i<=cnt; i+=)
edge[i].cap=edge[i^].cap=(edge[i].cap+edge[i^].cap)>>;
S=id[L],T=id[R];
int maxflow=dinic();
memset(visit,,sizeof(visit)); DFS(S);
ans[++tot]=maxflow;
int l=L,r=R;
for (int i=L; i<=R; i++)
if (visit[id[i]])
tmp[l++]=id[i];
else tmp[r--]=id[i];
for (int i=L; i<=R; i++) id[i]=tmp[i];
work(L,l-); work(r+,R);
}
int main()
{
init();
n=read(),m=read();
for (int i=; i<=n; i++) id[i]=i;
for (int u,v,w,i=; i<=m; i++)
u=read(),v=read(),w=read(),insert(u,v,w);
work(,n);
sort(ans+,ans+tot+);
int an=;
for (int i=; i<=tot; i++) if (ans[i]!=ans[i-]) an++;
printf("%d\n",an);
return ;
}

滚回来学校期中考试,考前就是不复习的刷水题1A的乐趣.....

【BZOJ-4519】不同的最小割 最小割树(分治+最小割)的更多相关文章

  1. BZOJ 3218 UOJ #77 A+B Problem (主席树、最小割)

    大名鼎鼎的A+B Problem, 主席树优化最小割-- 调题死活调不对,一怒之下改了一种写法交上去A了,但是改写法之后第4,5个点常数变大很多,于是喜提UOJ全站倒数第三 目前还不知道原来的写法为什 ...

  2. BZOJ 4367 [IOI2014]holiday (决策单调DP+主席树+分治)

    题目大意:略 题目传送门 神题,不写长题解简直是浪费了这道题 贪心 考虑从0节点出发的情况,显然一直往前走不回头才是最优策略 如果起点是在中间某个节点$s$,容易想到,如果既要游览$s$左边的某些景点 ...

  3. BZOJ 1018: [SHOI2008]堵塞的交通traffic(线段树分治+并查集)

    传送门 解题思路 可以离线,然后确定每个边的出现时间,算这个排序即可.然后就可以线段树分治了,连通性用并查集维护,因为要撤销,所以要按秩合并,时间复杂度\(O(nlog^2 n)\) 代码 #incl ...

  4. bzoj 4519: [Cqoi2016]不同的最小割 最小割树

    怎么求一张无向图中任意两点之间的最小割? http://fanhq666.blog.163.com/blog/static/8194342620113495335724/ 一张无向图不同的最小割最多有 ...

  5. BZOJ 4519 [CQOI2016]不同的最小割

    这道题目很奇怪. 为什么奇怪?因为这道题用了一种叫分治最小割/最小割树的玩意. 以前从来没有见过这东西. 推荐一个讲这玩意的博客 写起来还是很顺手的. #include<iostream> ...

  6. BZOJ 4435 [Cerc2015]Juice Junctions 分治最小割+hash

    分治最小割的题目,要求n2. 之前用的n3的方法自然不能用了. 于是用hash,设hash[i][j]表示在最小割为i的时候,j是否与S联通. 看懂这个需要理解一下最小割树的构造. 这种题建议用EK写 ...

  7. BZOJ 2039:[2009国家集训队]employ人员雇佣(最小割)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2039 题意:中文题意. 思路:一开始想着和之前做的最大权闭合图有点像,但是如果把边全部当成点的话,那 ...

  8. BZOJ 2229 / Luogu P3329 [ZJOI2011]最小割 (分治最小割板题)

    题面 求所有点对的最小割中<=c的数量 分析 分治最小割板题 首先,注意这样一个事实:如果(X,Y)是某个s1-t1最小割,(Z,W)是某个s2-t2最小割,那么X∩Z.X∩W.Y∩Z.Y∩W这 ...

  9. 【BZOJ-4435】Juice Junctions 最小割树(分治+最小割)+Hash

    4435: [Cerc2015]Juice Junctions Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 20  Solved: 11[Submi ...

随机推荐

  1. JS中将JSON的字符串解析成JSON数据格式《转》

    在JS中将JSON的字符串解析成JSON数据格式,一般有两种方式: 1.一种为使用eval()函数. 2. 使用Function对象来进行返回解析. 使用eval函数来解析,并且使用jquery的ea ...

  2. 用Myisamchk让MySQL数据表更健康

    用Myisamchk让MySQL数据表更健康 2011-03-15 09:15 水太深 ITPUB 字号:T | T 为了让MySQL数据库中的数据表“更健康”,就需要对其进行定期体检.在这里笔者推荐 ...

  3. Html网页使用jQuery传递参数并获取Web API的数据

    昨天Insus.NET有开始学习Web API,<ASP.NET MVC的Web Api的实练>http://www.cnblogs.com/insus/p/4334316.html .其 ...

  4. 小图标外链API

    网页上有些分享的小图标,比如分享到facebook,weibo,qq空间等功能的时候,图标以前一般是自己做一个css sprite.当一个网站的图标变了的时候,比如facebook变成assbook的 ...

  5. Webwork 学习之路【02】前端OGNL试练

    1.OGNL 出现的意义 在mvc中,数据是在各个层次之间进行流转是一个不争的事实.而这种流转,也就会面临一些困境,这些困境,是由于数据在不同世界中的表现形式不同而造成的: a. 数据在页面上是一个扁 ...

  6. Canvas之打字机游戏

    最近针对粒子化作了一点点的探究,决定结合其做个小游戏,于是这个简单的打字游戏出世了. 试玩地址:Typewriter game  仅在chrome下测试,请谨慎使用其他浏览器(特别是ff):加载速度有 ...

  7. PHP 依赖注入,从此不再考虑加载顺序

    说这个话题之前先讲一个比较高端的思想--'依赖倒置原则' "依赖倒置是一种软件设计思想,在传统软件中,上层代码依赖于下层代码,当下层代码有所改动时,上层代码也要相应进行改动,因此维护成本较高 ...

  8. [CF #236 (Div. 2) E] Strictly Positive Matrix(强联通分量)

    题目:http://codeforces.com/contest/402/problem/E 题意:给你一个矩阵a,判断是否存在k,使得a^k这个矩阵全部元素都大于0 分析:把矩阵当作01矩阵,超过1 ...

  9. android之MP3播放器(1)

    该播放器只是对本地的MP3文件进行简单的播放 布局文件 布局文件中设置了三个按钮分别来进行播放.暂停和继续播放 <?xml version="1.0" encoding=&q ...

  10. JavaScript instanceof 运算符深入剖析

    简介: 随着 web 的发展,越来越多的产品功能都放在前端进行实现,增强用户体验.而前端开发的主要语言则是 JavaScript.学好 JavaScript 对开发前端应用已经越来越重要.在开发复杂产 ...