【BZOJ-4519】不同的最小割 最小割树(分治+最小割)
4519: [Cqoi2016]不同的最小割
Time Limit: 20 Sec Memory Limit: 512 MB
Submit:
393 Solved: 239
[Submit][Status][Discuss]
Description
Input
Output
输出文件第一行为一个整数,表示个数。
Sample Input
1 2 3
1 3 6
2 4 5
3 4
4
Sample Output
HINT
Source
Solution
跟上一题的做法很像,分治最小割
记录答案即可,最后排序看看有多少不同的即可.....
Code
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
#define maxn 1000
#define maxm 100010
int n,m,q,t,ans[maxn],tot,id[maxn],tmp[maxn];
struct Edgenode{int next,to,cap;}edge[maxm];
int head[maxn],cnt=;
void add(int u,int v,int w)
{cnt++; edge[cnt].to=v; edge[cnt].next=head[u]; head[u]=cnt; edge[cnt].cap=w;}
void insert(int u,int v,int w) {add(u,v,w); add(v,u,w);}
int dis[maxn],que[maxn<<],cur[maxn],S,T;
bool bfs()
{
memset(dis,-,sizeof(dis));
que[]=S; dis[S]=; int he=,ta=;
while (he<ta)
{
int now=que[he++];
for (int i=head[now]; i; i=edge[i].next)
if (edge[i].cap && dis[edge[i].to]==-)
dis[edge[i].to]=dis[now]+,que[ta++]=edge[i].to;
}
return dis[T]!=-;
}
int dfs(int loc,int low)
{
if (loc==T) return low;
int w,used=;
for (int i=cur[loc]; i; i=edge[i].next)
if (edge[i].cap && dis[edge[i].to]==dis[loc]+)
{
w=dfs(edge[i].to,min(low-used,edge[i].cap));
edge[i].cap-=w; edge[i^].cap+=w;
used+=w; if (edge[i].cap) cur[loc]=i;
if (used==low) return low;
}
if (!used) dis[loc]=-;
return used;
}
#define inf 0x7fffffff
int dinic()
{
int tmp=;
while (bfs())
{
for (int i=; i<=n; i++) cur[i]=head[i];
tmp+=dfs(S,inf);
}
return tmp;
}
void init()
{
cnt=;
memset(ans,,sizeof(ans));
memset(head,,sizeof(head));
}
bool visit[maxn];
void DFS(int x)
{
visit[x]=;
for (int i=head[x]; i; i=edge[i].next)
if (edge[i].cap && !visit[edge[i].to])
DFS(edge[i].to);
}
void work(int L,int R)
{
if (L==R) return;
for (int i=; i<=cnt; i+=)
edge[i].cap=edge[i^].cap=(edge[i].cap+edge[i^].cap)>>;
S=id[L],T=id[R];
int maxflow=dinic();
memset(visit,,sizeof(visit)); DFS(S);
ans[++tot]=maxflow;
int l=L,r=R;
for (int i=L; i<=R; i++)
if (visit[id[i]])
tmp[l++]=id[i];
else tmp[r--]=id[i];
for (int i=L; i<=R; i++) id[i]=tmp[i];
work(L,l-); work(r+,R);
}
int main()
{
init();
n=read(),m=read();
for (int i=; i<=n; i++) id[i]=i;
for (int u,v,w,i=; i<=m; i++)
u=read(),v=read(),w=read(),insert(u,v,w);
work(,n);
sort(ans+,ans+tot+);
int an=;
for (int i=; i<=tot; i++) if (ans[i]!=ans[i-]) an++;
printf("%d\n",an);
return ;
}
滚回来学校期中考试,考前就是不复习的刷水题1A的乐趣.....
【BZOJ-4519】不同的最小割 最小割树(分治+最小割)的更多相关文章
- BZOJ 3218 UOJ #77 A+B Problem (主席树、最小割)
大名鼎鼎的A+B Problem, 主席树优化最小割-- 调题死活调不对,一怒之下改了一种写法交上去A了,但是改写法之后第4,5个点常数变大很多,于是喜提UOJ全站倒数第三 目前还不知道原来的写法为什 ...
- BZOJ 4367 [IOI2014]holiday (决策单调DP+主席树+分治)
题目大意:略 题目传送门 神题,不写长题解简直是浪费了这道题 贪心 考虑从0节点出发的情况,显然一直往前走不回头才是最优策略 如果起点是在中间某个节点$s$,容易想到,如果既要游览$s$左边的某些景点 ...
- BZOJ 1018: [SHOI2008]堵塞的交通traffic(线段树分治+并查集)
传送门 解题思路 可以离线,然后确定每个边的出现时间,算这个排序即可.然后就可以线段树分治了,连通性用并查集维护,因为要撤销,所以要按秩合并,时间复杂度\(O(nlog^2 n)\) 代码 #incl ...
- bzoj 4519: [Cqoi2016]不同的最小割 最小割树
怎么求一张无向图中任意两点之间的最小割? http://fanhq666.blog.163.com/blog/static/8194342620113495335724/ 一张无向图不同的最小割最多有 ...
- BZOJ 4519 [CQOI2016]不同的最小割
这道题目很奇怪. 为什么奇怪?因为这道题用了一种叫分治最小割/最小割树的玩意. 以前从来没有见过这东西. 推荐一个讲这玩意的博客 写起来还是很顺手的. #include<iostream> ...
- BZOJ 4435 [Cerc2015]Juice Junctions 分治最小割+hash
分治最小割的题目,要求n2. 之前用的n3的方法自然不能用了. 于是用hash,设hash[i][j]表示在最小割为i的时候,j是否与S联通. 看懂这个需要理解一下最小割树的构造. 这种题建议用EK写 ...
- BZOJ 2039:[2009国家集训队]employ人员雇佣(最小割)
http://www.lydsy.com/JudgeOnline/problem.php?id=2039 题意:中文题意. 思路:一开始想着和之前做的最大权闭合图有点像,但是如果把边全部当成点的话,那 ...
- BZOJ 2229 / Luogu P3329 [ZJOI2011]最小割 (分治最小割板题)
题面 求所有点对的最小割中<=c的数量 分析 分治最小割板题 首先,注意这样一个事实:如果(X,Y)是某个s1-t1最小割,(Z,W)是某个s2-t2最小割,那么X∩Z.X∩W.Y∩Z.Y∩W这 ...
- 【BZOJ-4435】Juice Junctions 最小割树(分治+最小割)+Hash
4435: [Cerc2015]Juice Junctions Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 20 Solved: 11[Submi ...
随机推荐
- Centos6 修改max user processes limits
ulimit:显示(或设置)用户可以使用的资源的限制(limit),这限制分为软限制(当前限制)和硬限制(上限),其中硬限制是软限制的上限值,应用程序在运行过程中使用的系统资源不超过相应的软限制,任何 ...
- Linux shell的输入输出
echo --echo命令可以显示文本行或变量,或者把字符串输入到文件 --echo [option] string -e 解析转义字符 例如:echo -e "nimenhao\nasfd ...
- 东大OJ-Prim算法
1222: Sweep the snow 时间限制: 1 Sec 内存限制: 128 MB 提交: 28 解决: 18 [提交][状态][讨论版] 题目描述 After the big big s ...
- Oracle sql develpoer
Oracle SQL Developer是针对Oracle数据库的交互式开发环境(IDE) Oracle SQL Developer简化了Oracle数据库的开发和管理. SQL Develo ...
- 34-nl 简明笔记
为文本文件添加行号 nl [options] files 参数 files是nl需要为其添加行号的文本文件路径名,如果有多个文件,则nl会把多个文件合在一起编号,并输出到标准输出上 选项 -b ...
- Maven的set.xml标签详解
文件存放位置 全局配置: ${M2_HOME}/conf/settings.xml 用户配置: ${user.home}/.m2/settings.xml note:用户配置优先于全局配置.${use ...
- json注意:
import json #dct="{'1':111}"#json 不认单引号 #dct=str({"1":111})#报错,因为生成的数据还是单引号:{'on ...
- Oracle之物化视图
来源于:http://www.cnblogs.com/Ronger/archive/2012/03/28/2420962.html 近期根据项目业务需要对oracle的物化视图有所接触,在网上搜寻关于 ...
- Web Api单元测试写法
例如我们在Web Api项目中有个Controller public class SomeController : ApiController { public HttpResponseMessage ...
- Swift开发小技巧--TabBar中间按钮的添加方案
TabBar中间按钮的添加方案 之前做百思项目的时候,也有一个中间按钮,当时是重写的TabBar,这里介绍一个新的方法 给TabbarVC多添加添加一个控制器,这个控制器的作用仅仅是用来占位的,多了这 ...