2007: [Noi2010]海拔

Time Limit: 20 Sec  Memory Limit: 552 MB
Submit: 2095  Solved: 1002
[Submit][Status][Discuss]

Description

YT市是一个规划良好的城市,城市被东西向和南北向的主干道划分为n×n个区域。简单起见,可以将YT市看作一个正方形,每一个区域也可看作一个正方形。从而,YT城市中包括(n+1)×(n+1)个交叉路口和2n×(n+1)条双向道路(简称道路),每条双向道路连接主干道上两个相邻的交叉路口。下图为一张YT市的地图(n = 2),城市被划分为2×2个区域,包括3×3个交叉路口和12条双向道路。 小Z作为该市的市长,他根据统计信息得到了每天上班高峰期间YT市每条道路两个方向的人流量,即在高峰期间沿着该方向通过这条道路的人数。每一个交叉路口都有不同的海拔高度值,YT市市民认为爬坡是一件非常累的事情,每向上爬h的高度,就需要消耗h的体力。如果是下坡的话,则不需要耗费体力。因此如果一段道路的终点海拔减去起点海拔的值为h(注意h可能是负数),那么一个人经过这段路所消耗的体力是max{0, h}(这里max{a, b}表示取a, b两个值中的较大值)。 小Z还测量得到这个城市西北角的交叉路口海拔为0,东南角的交叉路口海拔为1(如上图所示),但其它交叉路口的海拔高度都无法得知。小Z想知道在最理想的情况下(即你可以任意假设其他路口的海拔高度),每天上班高峰期间所有人爬坡所消耗的总体力和的最小值。

Input

第一行包含一个整数n,含义如上文所示。 接下来4n(n + 1)行,每行包含一个非负整数分别表示每一条道路每一个方向的人流量信息。输入顺序:n(n + 1)个数表示所有从西到东方向的人流量,然后n(n + 1)个数表示所有从北到南方向的人流量,n(n + 1)个数表示所有从东到西方向的人流量,最后是n(n + 1)个数表示所有从南到北方向的人流量。对于每一个方向,输入顺序按照起点由北向南,若南北方向相同时由西到东的顺序给出(参见样例输入)。

Output

仅包含一个数,表示在最理想情况下每天上班高峰期间所有人爬坡所消耗的总体力和(即总体力和的最小值),结果四舍五入到整数。

Sample Input

1
1
2
3
4
5
6
7
8

Sample Output

3
【样例说明】
样例数据见下图。
最理想情况下所有点的海拔如上图所示。
【数据规模】
对于20%的数据:n ≤ 3;
对于50%的数据:n ≤ 15;
对于80%的数据:n ≤ 40;
对于100%的数据:1 ≤ n ≤ 500,0 ≤ 流量 ≤ 1,000,000且所有流量均为整数。

HINT

Source

Solution

典型的平面图,所以肯定利用其性质

很BZOJ1001狼爪兔子很像,直接平面图转对偶图求最短路即为最小割,那么就比较简单了

Code

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<queue>
using namespace std;
int read()
{
int x=,f=; char ch=getchar();
while (ch<'' || ch>'') {if (ch=='-') f=-; ch=getchar();}
while (ch>='' && ch<='') {x=x*+ch-''; ch=getchar();}
return x*f;
}
#define maxn 250010
int n;
struct EdgeNode{int next,to,len;}edge[maxn*];
int head[maxn],cnt;
void add(int u,int v,int w) {cnt++; edge[cnt].to=v; edge[cnt].next=head[u]; head[u]=cnt; edge[cnt].len=w;}
void insert(int u,int v,int w) {add(u,v,w);}
bool visit[maxn]; int dis[maxn],S,T;
#define inf 0x7fffffff
void spfa()
{
queue<int>q;
for (int i=S; i<=T; i++) dis[i]=inf;
q.push(S); visit[S]=; dis[S]=;
while (!q.empty())
{
int now=q.front(); q.pop(); visit[now]=;
for (int i=head[now]; i; i=edge[i].next)
if (dis[edge[i].to]>dis[now]+edge[i].len)
{
dis[edge[i].to]=dis[now]+edge[i].len;
if (!visit[edge[i].to])
visit[edge[i].to]=,q.push(edge[i].to);
}
}
}
int loc(int x,int y) {return (x-)*n+y;}
int main()
{
n=read(); S=,T=n*n+;
for (int i=; i<=n+; i++)
for (int x,j=; j<=n; j++)
{
x=read();
if (i==) insert(loc(i,j),T,x); else if (i==n+) insert(S,loc(i-,j),x); else insert(loc(i,j),loc(i-,j),x);
}
for (int i=; i<=n; i++)
for (int x,j=; j<=n+; j++)
{
x=read();
if (j==) insert(S,loc(i,j),x); else if (j==n+) insert(loc(i,j-),T,x); else insert(loc(i,j-),loc(i,j),x);
}
for (int i=; i<=n+; i++)
for (int x,j=; j<=n; j++)
{
x=read();
if (i==) insert(T,loc(i,j),x); else if (i==n+) insert(loc(i-,j),S,x); else insert(loc(i-,j),loc(i,j),x);
}
for (int i=; i<=n; i++)
for (int x,j=; j<=n+; j++)
{
x=read();
if (j==) insert(loc(i,j),S,x); else if (j==n+) insert(T,loc(i,j-),x); else insert(loc(i,j),loc(i,j-),x);
}
spfa();
printf("%d\n",dis[T]);
return ;
}

写spfa的sb选手...跑出dijkstra的10倍时间了....

【BZOJ-2007】海拔 最小割 (平面图转对偶图 + 最短路)的更多相关文章

  1. bzoj 1001 原图最小割转化为对偶图最短路

    题目大意: 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的, 而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个网格的地形 ...

  2. BZOJ 1001 狼抓兔子 (网络流最小割/平面图的对偶图的最短路)

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1001 算法讨论: 1.可以用最大流做,最大流等于最小割. 2.可以把这个图转化其对偶图,然 ...

  3. BZOJ 2007 海拔(平面图最小割转对偶图最短路)

    首先注意到,把一个点的海拔定为>1的数是毫无意义的.实际上,可以转化为把这些点的海拔要么定为0,要么定为1. 其次,如果一个点周围的点的海拔没有和它相同的,那么这个点的海拔也是可以优化的,即把这 ...

  4. BZOJ.2007.[NOI2010]海拔(最小割 对偶图最短路)

    题目链接 想一下能猜出,最优解中海拔只有0和1,且海拔相同的点都在且只在1个连通块中. 这就是个平面图最小割.也可以转必须转对偶图最短路,不然只能T到90分了..边的方向看着定就行. 不能忽略回去的边 ...

  5. BZOJ 2007 海拔(平面图最小割-最短路)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2007 题意:给出一个n*n的格子,那么顶点显然有(n+1)*(n+1)个.每两个相邻顶点 ...

  6. bzoj 1001 平面图转对偶图 最短路求图最小割

    原题传送门http://www.lydsy.com/JudgeOnline/problem.php?id=1001 整理了下之前A的题 平面图可以转化成对偶图,然后(NlogN)的可以求出图的最小割( ...

  7. bzoj 2007 [Noi2010]海拔——最小割转最短路

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2007 一个点的高度一定不是0就是1.答案一定形如一个左上角的连通块全是0的点.一个右下角的连 ...

  8. bzoj1001/luogu4001 狼抓兔子 (最小割/平面图最小割转对偶图最短路)

    平面图转对偶图:先在原图中加一个s->t的边,然后对每个面建一个点,对每条分隔两个面的边加一条连接这两个面对应点的边,边权等于原边权. 然后从刚才加的s->t分割出来的两面对应的两个点跑最 ...

  9. 【bzoj2007】[Noi2010]海拔 最小割+对偶图+最短路

    题目描述 YT市是一个规划良好的城市,城市被东西向和南北向的主干道划分为n×n个区域.简单起见,可以将YT市看作一个正方形,每一个区域也可看作一个正方形.从而,YT城市中包括(n+1)×(n+1)个交 ...

随机推荐

  1. Java:对象的强、软、弱和虚引用

    1.对象的强.软.弱和虚引用 在JDK 1.2以前的版本中,若一个对象不被任何变量引用,那么程序就无法再使用这个对象.也就是说,只有对象处于可触及(reachable)状态,程序才能使用它.从JDK ...

  2. ASP.NET整理:Cookie,Application,Session,页面生命周期

    一.设置Cookie的2种方式 1.    Repsonse.Cookie[“名”] = 值; 2.    HttpCookie hcCookie = new HttpCookie(“名”,值); h ...

  3. eclipse/intellij Idea集成jetty

    jetty相对weblogic.jboss.tomcat而言,启动速度快,十分方便开发调试,以下是eclipse里的使用步骤: 一.eclipse->Marketplace里搜索 jetty 一 ...

  4. Android -- TouchDelegate

    设计规定 Android4.0设计规定的有效可触摸的UI元素标准是48dp,这是一个用户手指能准确并且舒适触摸的区域. 如下图所示,你的UI元素可能小于48dp,图标仅有32dp,按钮仅有40dp,但 ...

  5. FineUI v4.0.2 (beta) 发布了!

    FineUI v4.0.2 (beta) 已经于 2013-12-15 发布! ================================== 关于FineUI基于 ExtJS 的开源 ASP. ...

  6. web 前端常用组件【01】Pagination 分页

    分页组件几乎是一般网站都会涉及到的组件,网上有很多这样的插件,自己挑来跳去选择了这一款. 官方Demo网址:http://mricle.com/JqueryPagination 功能强大,可扩展性比较 ...

  7. 快速备份和还原 MySQL 数据库的另一种方法

    一直使用 SQL Server 作为公司产品的数据库来存储系统数据,所以备份还原一直都不是问题,因为 SQL Server 的备份还原非常迅速和易用.但今年公司改变策略,使用起 MySQL 数据库作为 ...

  8. AngularJS中实现无限级联动菜单

    多级联动菜单是常见的前端组件,比如省份-城市联动.高校-学院-专业联动等等.场景虽然常见,但仔细分析起来要实现一个通用的无限分级联动菜单却不一定像想象的那么简单.比如,我们需要考虑子菜单的加载是同步的 ...

  9. Linux权限

    在Linux中要修改一个文件夹或文件的权限我们需要用到linux chmod命令来做,下面我写了几个简单的实例大家可参考一下. 语法如下: chmod [who] [+ | - | =] [mode] ...

  10. Python 练习册

    01:将你的 QQ 头像(或者微博头像)右上角加上红色的数字,类似于微信未读信息数量那种提示效果 [图像处理] 类似于图中效果: py 2.7代码: from PIL import Image, Im ...