uva10870 矩阵
f(n) = a1f(n − 1) + a2f(n − 2) + a3f(n − 3) + . . . + adf(n − d), for n > d,
可以用矩阵进行优化,直接构造矩阵,然后快速幂即可。
#include<map>
#include<set>
#include<string>
#include<queue>
#include<stack>
#include<cmath>
#include<vector>
#include<cstdio>
#include<time.h>
#include<cstring>
#include<iostream>
#include<algorithm>
#define INF 1000000001
#define ll long long
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
using namespace std;
const int MAXN = ;
struct Mat
{
ll a[MAXN][MAXN];
void Init(){
memset(a,,sizeof(a));
for(int i = ; i < ; i++){
a[i][i] = ;
}
}
};
ll fa[MAXN],d[MAXN];
ll n,k,MOD;
Mat a;
void Init()
{
memset(a.a,,sizeof(a.a));
for(int i = ; i < n-; i++){
a.a[i][i+] = ;
}
for(int i = ; i < n; i++){
a.a[n-][i] = fa[n - i - ];
}
}
Mat Matadd(Mat a,Mat b)
{
Mat c;
for(int i = ; i < n; i++){
for(int j = ; j < n; j++){
c.a[i][j] = (a.a[i][j] + b.a[i][j])%MOD;
}
}
return c;
}
Mat Matmul(Mat a,Mat b)
{
Mat c;
for(int i = ; i < n; i++){
for(int j = ; j < n; j++){
c.a[i][j] = ;
for(int k = ; k < n; k++){
c.a[i][j] += (a.a[i][k] * b.a[k][j])%MOD;
}
c.a[i][j] %= MOD;
}
}
return c;
}
Mat power(Mat a,ll n)
{
Mat c;
c.Init();
while(n){
if(n & ){
c = Matmul(c,a);
}
a = Matmul(a,a);
n >>= ;
}
return c;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("data","r",stdin);
#endif
while(~scanf("%lld%lld%lld",&n,&k,&MOD)){
if(!n && !k && !MOD)break;
for(int i = ; i < n; i++){
scanf("%lld",&fa[i]);
fa[i] %= MOD;
}
for(int i = ; i < n; i++){
scanf("%lld",&d[i]);
d[i] %= MOD;
}
Init(); a = power(a,k-);
ll ans = ;
for(int i = ; i < n; i++){
ans += a.a[][i] * d[i] % MOD;
ans %= MOD;
}
printf("%lld\n",ans);
}
return ;
}
uva10870 矩阵的更多相关文章
- UVA10870—Recurrences(简单矩阵快速幂)
题目链接:https://vjudge.net/problem/UVA-10870 题目意思: 给出a1,a2,a3,a4,a5………………ad,然后算下面这个递推式子,简单的矩阵快速幂,裸题,但是第 ...
- UVA10870 Recurrences —— 矩阵快速幂
题目链接:https://vjudge.net/problem/UVA-10870 题意: 典型的矩阵快速幂的运用.比一般的斐波那契数推导式多了几项而已. 代码如下: #include <bit ...
- UVA10870 Recurrences (矩阵快速幂及构造方法详解)
题意: F(n) = a1 * F(n-1) + a2 * F(n-2)+ ···· + ad * F(n-d). 求给你的n . 很明显这是一道矩阵快速幂的题目. 题解: [Fn-1, Fn-2, ...
- UVA10870递推关系(矩阵乘法)
题意: 给以个递推f(n) = a1 f(n - 1) + a2 f(n - 2) + a3 f(n - 3) + ... + ad f(n - d), for n > d.,给你n ...
- UVa 10870 & 矩阵快速幂
题意: 求一个递推式(不好怎么概括..)的函数的值. 即 f(n)=a1f(n-1)+a2f(n-2)+...+adf(n-d); SOL: 根据矩阵乘法的定义我们可以很容易地构造出矩阵,每次乘法即可 ...
- uva10870
https://vjudge.net/problem/UVA-10870 裸的矩阵快速幂 注意系数矩阵在前面 因为系数矩阵为d*d 方程矩阵为d * 1 放反了就是d * 1 d * d 不符合矩阵乘 ...
- C语言 · 矩阵乘法 · 算法训练
问题描述 输入两个矩阵,分别是m*s,s*n大小.输出两个矩阵相乘的结果. 输入格式 第一行,空格隔开的三个正整数m,s,n(均不超过200). 接下来m行,每行s个空格隔开的整数,表示矩阵A(i,j ...
- 获取Canvas当前坐标系矩阵
前言 在我的另一篇博文 Canvas坐标系转换 中,我们知道了所有的平移缩放旋转操作都会影响到画布坐标系.那在我们对画布进行了一系列操作之后,怎么再知道当前矩阵数据状态呢. 具体代码 首先请看下面的一 ...
- CSharpGL(32)矩阵与四元数与角度旋转轴的相互转换
CSharpGL(32)矩阵与四元数与角度旋转轴的相互转换 三维世界里的旋转(rotate),可以用一个3x3的矩阵描述:可以用(旋转角度float+旋转轴vec3)描述.数学家欧拉证明了这两种形式可 ...
随机推荐
- java 访问sql server数据库
控制面板--管理工具—ODBC数据源(64位)--系统DNS—添加(名称为“test”,服务器填“.”描述随意) 这里访问的数据库为AdventuerWorks 数据源配置好后可以测试一下,下面是ja ...
- AC日记——数字统计 openjudge 1.5 41
41:数字统计 总时间限制: 1000ms 内存限制: 65536kB 描述 请统计某个给定范围[L, R]的所有整数中,数字2出现的次数. 比如给定范围[2, 22],数字2在数2中出现了1次, ...
- HQL基础查询语句
HQL基础查询语句 1.使用hql语句检索出Student表中的所有列 //核心代码 @Test public void oneTest() { Query query=session.createQ ...
- java 22 - 17 多线程之等待唤醒机制(接16)
先来一张图,看看什么叫做等待唤醒机制 接上一章的例子. 例子:学生信息的录入和获取 * 资源类:Student * 设置学生数据:SetThread(生产者) * 获取学生数据:GetThread( ...
- class 函数
cocos2d-x 3.3 lua 版本的class函数用法: local FightScene = class("FightScene", function() return c ...
- HTML 学习笔记 CSS样式(框模型)
CSS框模型( Box Model)规定了元素框处理元素的内容 内边距 边框 和 外边距的方式 CSS框模型概述 可以用下面的模型图概述
- Post model至Web Api
Post model可以解决多动态性的参数至Web Api中去,获取数据或是创建数据.如果一个对象有很多字段,需要对每一个字段进行查询或是在创建对象时,我们可以考虑使用model来作参数.这样不必在控 ...
- 李学斌:论复杂系统中的应用间协作V3
说明 本文主要讨论了巨型复杂业务系统的一种构建思路,力图实现决策意志的快速.准确.一致的下传并简化实施成本提供实施效率.通过全业务领域的即时流程编排,实现全网业务IT系统的快速建设与迭代.本文所讲的方 ...
- css 内容超过容器宽度,checkbox等控件不会随着内容延伸
<div a> <div id='内容容器'> <div>很长的内容</div><input type='checkbox'/> </ ...
- php数组函数,字符串,linux命令
1>> Linux常用命令一. 文件目录操作命令1. ls命令 命令格式:ls [选项] [目录名] 命令功能:列出目标目录中所有的子目录和文件.2. 命令格式:cd [目录名 ...