Fibonacci

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4844    Accepted Submission(s): 2245

Problem Description
2007年到来了。经过2006年一年的修炼,数学神童zouyu终于把0到100000000的Fibonacci数列
(f[0]=0,f[1]=1;f[i] = f[i-1]+f[i-2](i>=2))的值全部给背了下来。
接下来,CodeStar决定要考考他,于是每问他一个数字,他就要把答案说出来,不过有的数字太长了。所以规定超过4位的只要说出前4位就可以了,可是CodeStar自己又记不住。于是他决定编写一个程序来测验zouyu说的是否正确。
 
Input
输入若干数字n(0 <= n <= 100000000),每个数字一行。读到文件尾。
 
Output
输出f[n]的前4个数字(若不足4个数字,就全部输出)。
 
Sample Input
0
1
2
3
4
5
35
36
37
38
39
40
 
Sample Output
0
1
1
2
3
5
9227
1493
2415
3908
6324
1023
 
Author
daringQQ
 
Source
题意:求斐波那契数列的前n位数
题解:斐波那契的通项公式为
 /******************************
code by drizzle
blog: www.cnblogs.com/hsd-/
^ ^ ^ ^
O O
******************************/
#include<bits/stdc++.h>
#include<map>
#include<set>
#include<cmath>
#include<queue>
#include<bitset>
#include<math.h>
#include<vector>
#include<string>
#include<stdio.h>
#include<cstring>
#include<iostream>
#include<algorithm>
#pragma comment(linker, "/STACK:102400000,102400000")
using namespace std;
#define A first
#define B second
const int mod=;
const int MOD1=;
const int MOD2=;
const double EPS=0.00000001;
typedef __int64 ll;
const ll MOD=;
const int INF=;
const ll MAX=1ll<<;
const double eps=1e-;
const double inf=~0u>>;
const double pi=acos(-1.0);
typedef double db;
typedef unsigned int uint;
typedef unsigned long long ull;
int a[];
double change(double a)
{
while(a-10.0>=eps)
{
a/=;
}
return a;
}
double pow(double a,int b)
{
double ans=1.0;
while(b)
{
if(b&){
ans*=a;
ans=change(ans);
}
a*=a;
a=change(a);
b>>=;
}
return ans;
}
int main()
{
int n;
a[]=;
a[]=;
for(int i=;i<=;i++)
a[i]=a[i-]+a[i-];
double base1=(1.0+sqrt(5.0))/2.0,base2=(1.0-sqrt(5.0))/2.0;
while(scanf("%d",&n)!=EOF)
{
if(n<=)
printf("%d\n",a[n]);
else
{
double ans=(1.0)/sqrt(5.0)*pow(base1,n);
if(ans-1.0>=eps)
ans*=;
else
ans*=;
printf("%d\n",(int)ans);
}
}
return ;
}
 

HDU 1568 double 快速幂的更多相关文章

  1. hdu 1568 Fibonacci 快速幂

    Fibonacci Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Proble ...

  2. HDU 3802 矩阵快速幂 化简递推式子 加一点点二次剩余知识

    求$G(a,b,n,p) = (a^{\frac {p-1}{2}}+1)(b^{\frac{p-1}{2}}+1)[(\sqrt{a} + \sqrt{b})^{2F_n} + (\sqrt{a} ...

  3. HDU 2855 (矩阵快速幂)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2855 题目大意:求$S(n)=\sum_{k=0}^{n}C_{n}^{k}Fibonacci(k)$ ...

  4. HDU 5950 矩阵快速幂

    Recursive sequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  5. HDU 4471 矩阵快速幂 Homework

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4471 解题思路,矩阵快速幂····特殊点特殊处理····· 令h为计算某个数最多须知前h个数,于是写 ...

  6. HDU - 1575——矩阵快速幂问题

    HDU - 1575 题目: A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%9973.  Input数据的第一行是一个T,表示有T组数据. 每组数据的第一行有n( ...

  7. hdu 1757 (矩阵快速幂) 一个简单的问题 一个简单的开始

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1757 题意不难理解,当x小于10的时候,数列f(x)=x,当x大于等于10的时候f(x) = a0 * ...

  8. 随手练——HDU 5015 矩阵快速幂

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5015 看到这个限时,我就知道这题不简单~~矩阵快速幂,找递推关系 我们假设第一列为: 23 a1 a2 ...

  9. How many ways?? HDU - 2157 矩阵快速幂

    题目描述 春天到了, HDU校园里开满了花, 姹紫嫣红, 非常美丽. 葱头是个爱花的人, 看着校花校草竞相开放, 漫步校园, 心情也变得舒畅. 为了多看看这迷人的校园, 葱头决定, 每次上课都走不同的 ...

随机推荐

  1. LTE Module User Documentation(翻译13)——频率复用算法(Frequency Reuse Algorithms)

    LTE用户文档 (如有不当的地方,欢迎指正!)   19 Frequency Reuse Algorithms(频率复用算法)   本节我们将描述如何在 LTE 仿真中使用频率复用(FR)算法.共有两 ...

  2. PHP的autoload机制的实现解析

    在使用PHP的OO模式开发系统时,通常大家习惯上将每个类的实现都存放在一个单独的文件里,这样会很容易实现对类进行复用,同时将来维护时也很便利 一.autoload机制概述 在使用PHP的OO模式开发系 ...

  3. 学习mongo系列(七)aggregate() ,$group() 管道

    aggregate()聚合,主要用于处理数据(诸如统计平均值,求和等),并返回计算后的数据结果.有点类似sql语句中的 count(*) 接上边的数据库: > db.user.aggregate ...

  4. 【Todo】【读书笔记】机器学习-周志华

    书籍位置: /Users/baidu/Documents/Data/Interview/机器学习-数据挖掘/<机器学习_周志华.pdf> 一共442页.能不能这个周末先囫囵吞枣看完呢.哈哈 ...

  5. Spring + Mybatis 使用 PageHelper 插件分页

    原文:http://www.cnblogs.com/yucongblog/p/5330886.html 先增加maven依赖: <dependency> <groupId>co ...

  6. myeclipse中disable maven nature

    1.直接原因:出现这个问题,一般都是因为手抖误操作. 但是出现了问题,还不知道从何查起. 可能出现的场景是eclipse安装Maven插件后,右键项目却找不到Maven按钮,继而无法编译项目. 2.实 ...

  7. 使用WIC组件转换图片格式

    #include <windows.h>#include <Wincodec.h>#pragma comment(lib, "Windowscodecs.lib&qu ...

  8. Objective-C( Foundation框架 一 字符串)

    Objective-C 中核心处理字符串的类是 NSString 与 NSMutableString ,这两个类最大的区别就是NSString 创建赋值以后该字符串的内容与长度不能在动态的更改,除非重 ...

  9. Ruby学习笔记

    #!/usr/bin/ruby puts "Hello, Ruby, what is your name?" $name = STDIN.gets puts "Hi, I ...

  10. JavaWeb chapter6 对象作用域

    1.  对象属性所在作用域:谁能看到并使用这个属性,以及它能存活多久. 2.  应用上下文ServletContext对象作用域: 对于整个Web应用,只有一个ServletContext对象,而且在 ...