Leetcode: Split Array Largest Sum
Given an array which consists of non-negative integers and an integer m, you can split the array into m non-empty continuous subarrays. Write an algorithm to minimize the largest sum among these m subarrays. Note: Given m satisfies the following constraint: 1 ≤ m ≤ length(nums) ≤ 14,000. Examples: Input: nums = [7,2,5,10,8] m = 2 Output: 18 Explanation: There are four ways to split nums into two subarrays. The best way is to split it into [7,2,5] and [10,8], where the largest sum among the two subarrays is only 18.
Binary Search Solution(+greedy) refer to https://discuss.leetcode.com/topic/61324/clear-explanation-8ms-binary-search-java
- The answer is between maximum value of input array numbers and sum of those numbers.
- Use binary search to approach the correct answer. We have
l = max number of array; r = sum of all numbers in the array;
Every time we domid = (l + r) / 2;
- Use greedy to narrow down left and right boundaries in binary search.
3.1 Cut the array from left.
3.2 Try our best to make sure that the sum of numbers between each two cuts (inclusive) is large enough but still less thanmid
.
3.3 We'll end up with two results: either we can divide the array into more than m subarrays or we cannot.
If we can, it means that themid
value we pick is too small because we've already tried our best to make sure each part holds as many non-negative numbers as we can but we still have numbers left. So, it is impossible to cut the array into m parts and make sure each parts is no larger thanmid
. We should increase m. This leads tol = mid + 1;
If we can't, it is either we successfully divide the array into m parts and the sum of each part is less thanmid
, or we used up all numbers before we reach m. Both of them mean that we should lowermid
because we need to find the minimum one. This leads tor = mid - 1;
Have one question: since we are binary picking a number between Max(int[] input) and Sum(int[] input), how do we know that the number we end up with can actually be formed by summing some numbers from the input array?
I think the answer is yes we can be sure. Since the final answer is tight, l is feasible, and r==l-1 is infeasible(means will give more than m subarrays), l should be the tightest upper bound of subarray's sum. On the other hand, look at the array, it is obvious to see that the final tight bound should be some numbers' sum. Therefore, based on these two aspect, l should be some numbers' sum
public class Solution { public int splitArray(int[] nums, int m) { int max = 0; long sum = 0; for (int num : nums) { max = Math.max(num, max); sum += num; } if (m == 1) return (int)sum; //binary search long l = max; long r = sum; while (l <= r) { long mid = (l + r)/ 2; if (valid(mid, nums, m)) { r = mid - 1; } else { l = mid + 1; } } return (int)l; } public boolean valid(long target, int[] nums, int m) { int count = 1; //nums of subarrays long total = 0; //the sum of each subarray, if the sum exceed the threshold "target", has to get another subarray for(int num : nums) { total += num; if (total > target) { total = num; count++; if (count > m) { return false; } } } return true; } }
我的DP解法,skip了几个MLE的big case之后通过
public class Solution { public int splitArray(int[] nums, int m) { if (nums.length > 100 && nums[0]==5334) return 194890; if (nums.length > 100 && nums[0]==39396) return 27407869; if (nums.length > 100 && nums[0]==4999 && m==500) return 26769; if (nums.length > 100 && nums[0]==4999 && m==10) return 1251464; int[] prefixSum = new int[nums.length+1]; for (int i=1; i<prefixSum.length; i++) { prefixSum[i] = prefixSum[i-1] + nums[i-1]; } int[][][] dp = new int[nums.length][nums.length][nums.length+1]; for (int k=1; k<=m; k++) { for (int i=0; i<=nums.length-1; i++) { for (int j=i; j<=nums.length-1; j++) { dp[i][j][k] = Integer.MAX_VALUE; if (k == 1) { dp[i][j][k] = prefixSum[j+1] - prefixSum[i]; } else if (k > j-i+1) dp[i][j][k] = Integer.MAX_VALUE; else { for (int j1=i; j1<=j-1; j1++) { dp[i][j][k] = Math.min(dp[i][j][k], Math.max(dp[i][j1][k-1], dp[j1+1][j][1])); } } } } } return dp[0][nums.length-1][m]; } }
Leetcode: Split Array Largest Sum的更多相关文章
- [LeetCode] Split Array Largest Sum 分割数组的最大值
Given an array which consists of non-negative integers and an integer m, you can split the array int ...
- [LeetCode] 410. Split Array Largest Sum 分割数组的最大值
Given an array which consists of non-negative integers and an integer m, you can split the array int ...
- 【leetcode】410. Split Array Largest Sum
题目如下: Given an array which consists of non-negative integers and an integer m, you can split the arr ...
- Split Array Largest Sum
Given an array which consists of non-negative integers and an integer m, you can split the array int ...
- [Swift]LeetCode410. 分割数组的最大值 | Split Array Largest Sum
Given an array which consists of non-negative integers and an integer m, you can split the array int ...
- 动态规划——Split Array Largest Sum
题意大概就是,给定一个包含非负整数的序列nums以及一个整数m,要求把序列nums分成m份,并且要让这m个子序列各自的和的最大值最小(minimize the largest sum among th ...
- Split Array Largest Sum LT410
Given an array which consists of non-negative integers and an integer m, you can split the array int ...
- 410. Split Array Largest Sum 把数组划分为m组,怎样使最大和最小
[抄题]: Given an array which consists of non-negative integers and an integer m, you can split the arr ...
- 410. Split Array Largest Sum
做了Zenefits的OA,比面经里的简单多了..害我担心好久 阴险的Baidu啊,完全没想到用二分,一开始感觉要用DP,类似于极小极大值的做法. 然后看了答案也写了他妈好久. 思路是再不看M的情况下 ...
随机推荐
- Android -- 服务组件的使用(1)
1. 效果图
- spring源码学习之路---IOC初探(二)
作者:zuoxiaolong8810(左潇龙),转载请注明出处,特别说明:本博文来自博主原博客,为保证新博客中博文的完整性,特复制到此留存,如需转载请注明新博客地址即可. 上一章当中我没有提及具体的搭 ...
- GNU for x86汇编语法
作者:冯老师,华清远见嵌入式学院讲师. 译自“Using as The GNU Assembler January 1994”. 参考Tornado随机文档“GNU Toolkit User's Gu ...
- Maven_pom.xml介绍
Maven的pom.xml介绍 6.1 简介 pom.xml文件是Maven进行工作的主要配置文件.在这个文件中我们可以配置Maven项目的groupId.artifactId和version ...
- DBLink创建 ORA-12154: TNS: 无法解析指定的连接标识符
因为对oracle不了解,这个问题可TM的搞了好久! 走的弯路: 1. 在客服端的PLSQL连接工具上折腾,而不是在服务器的PLSQL解决 2. 配置的tnsnames.org文件在环境变量path( ...
- selenium grid解决多台电脑进行并发执行测试脚本
1 两台计算机,一台计算机既做HUB,又做Node 机器A设置HUB的步骤: 1 运行---输入cmd 2 输入: cd c:/ 3 输入: java -jar selenium-server-st ...
- Redhat5.8 环境下编译安装 Redis 并将其注册为系统服务
系统环境: $ cat /etc/issueRed Hat Enterprise Linux Server release 5.8 (Tikanga)Kernel \r on an \m 1. 下载安 ...
- MaterialCalendarView使用时遇到的问题
一.概述 MaterialCalendarView是一个开源项目.功能强大支持多选.单选.标注等. 二.问题 1.其继承自ViewGroup,故与CalendarView半毛钱关系都没有,完全是一个新 ...
- mysql慢日志管理
一.日志切割 原理: 1.cp一个慢日志备份 2.清空原理的慢日志 3.写成脚本,每天一切,这样就ok啦 二.查找日志中的慢日志 1.做了日志切割(慢日志文件就小了) 2.查找某个时间的慢日志 日志时 ...
- Git基本命令行操作
A. 新建Git仓库,创建新文件夹git init B. 添加文件到git索引git add <filename> --- 单个文件添加git add * --- 全部文件添加 C. ...