首先 Error = Bias + Variance

Error反映的是整个模型的准确度,Bias反映的是模型在样本上的输出与真实值之间的误差,即模型本身的精准度,Variance反映的是模型每一次输出结果与模型输出期望之间的误差,即模型的稳定性。

举一个例子,一次打靶实验,目标是为了打到10环,但是实际上只打到了7环,那么这里面的Error就是3。具体分析打到7环的原因,可能有两方面:一是瞄准出了问题,比如实际上射击瞄准的是9环而不是10环;二是枪本身的稳定性有问题,虽然瞄准的是9环,但是只打到了7环。那么在上面一次射击实验中,Bias就是1,反应的是模型期望与真实目标的差距,而在这次试验中,由于Variance所带来的误差就是2,即虽然瞄准的是9环,但由于本身模型缺乏稳定性,造成了实际结果与模型期望之间的差距。

在一个实际系统中,Bias与Variance往往是不能兼得的。如果要降低模型的Bias,就一定程度上会提高模型的Variance,反之亦然。造成这种现象的根本原因是,我们总是希望试图用有限训练样本去估计无限的真实数据。当我们更加相信这些数据的真实性,而忽视对模型的先验知识,就会尽量保证模型在训练样本上的准确度,这样可以减少模型的Bias。但是,这样学习到的模型,很可能会失去一定的泛化能力,从而造成过拟合,降低模型在真实数据上的表现,增加模型的不确定性。相反,如果更加相信我们对于模型的先验知识,在学习模型的过程中对模型增加更多的限制,就可以降低模型的variance,提高模型的稳定性,但也会使模型的Bias增大。Bias与Variance两者之间的trade-off是机器学习的基本主题之一,机会可以在各种机器模型中发现它的影子。

具体到K-fold Cross Validation的场景,其实是很好的理解的。首先看Variance的变化,还是举打靶的例子。假设我把抢瞄准在10环,虽然每一次射击都有偏差,但是这个偏差的方向是随机的,也就是有可能向上,也有可能向下。那么试验次数越多,应该上下的次数越接近,那么我们把所有射击的目标取一个平均值,也应该离中心更加接近。更加微观的分析,模型的预测值与期望产生较大偏差,在模型固定的情况下,原因还是出在数据上,比如说产生了某一些异常点。在最极端情况下,我们假设只有一个点是异常的,如果只训练一个模型,那么这个点会对整个模型带来影响,使得学习出的模型具有很大的variance。但是如果采用k-fold Cross Validation进行训练,只有1个模型会受到这个异常数据的影响,而其余k-1个模型都是正常的。在平均之后,这个异常数据的影响就大大减少了。

相比之下,模型的bias是可以直接建模的,只需要保证模型在训练样本上训练误差最小就可以保证bias比较小,而要达到这个目的,就必须是用所有数据一起训练,才能达到模型的最优解。因此,k-fold Cross Validation的目标函数破坏了前面的情形,所以模型的Bias必然要会增大。

更加深入的讨论见 - Understanding the Bias-Variance Tradeoff

摘自知乎 - 机器学习中的Bias(偏差),Error(误差),和Variance(方差)有什么区别和联系?

Error=Bias+Variance的更多相关文章

  1. 2.9 Model Selection and the Bias–Variance Tradeoff

    结论 模型复杂度↑Bias↓Variance↓ 例子 $y_i=f(x_i)+\epsilon_i,E(\epsilon_i)=0,Var(\epsilon_i)=\sigma^2$ 使用knn做预测 ...

  2. 机器学习总结-bias–variance tradeoff

    bias–variance tradeoff 通过机器学习,我们可以从历史数据学到一个\(f\),使得对新的数据\(x\),可以利用学到的\(f\)得到输出值\(f(x)\).设我们不知道的真实的\( ...

  3. 【笔记】偏差方差权衡 Bias Variance Trade off

    偏差方差权衡 Bias Variance Trade off 什么叫偏差,什么叫方差 根据下图来说 偏差可以看作为左下角的图片,意思就是目标为红点,但是没有一个命中,所有的点都偏离了 方差可以看作为右 ...

  4. On the Bias/Variance tradeoff in Machine Learning

    参考:https://codesachin.wordpress.com/2015/08/05/on-the-biasvariance-tradeoff-in-machine-learning/ 之前一 ...

  5. Bias vs. Variance(3)---用learning curves来判断bias/variance problem

    画learning curves可以用来检查我们的学习算法运行是否正常或者用来改进我们的算法,我们经常使用learning cruves来判断我们的算法是否存在bias problem/varianc ...

  6. Bias vs. Variance(2)--regularization and bias/variance,如何选择合适的regularization parameter λ(model selection)

    Linear regression with regularization 当我们的λ很大时,hθ(x)≍θ0,是一条直线,会出现underfit:当我们的λ很小时(=0时),即相当于没有做regul ...

  7. ubuntu之路——day7.1 衡量模型好坏的因素偏差和方差bias&variance 以及在深度学习中的模型优化思路

    Error | 误差 Bias | 偏差 – 衡量准确性 Variance | 方差 – 衡量稳定性 首先我们通常在实际操作中会直接用错误率或者与之对应的准确率来衡量一个模型的好坏,但是更加准确的做法 ...

  8. 【笔记】机器学习 - 李宏毅 - 3 - Bias & Variance

    A more complex model does not always lead to better performance on testing data. Because error due t ...

  9. [转]理解 Bias 与 Variance 之间的权衡----------bias variance tradeoff

    有监督学习中,预测误差的来源主要有两部分,分别为 bias 与 variance,模型的性能取决于 bias 与 variance 的 tradeoff ,理解 bias 与 variance 有助于 ...

随机推荐

  1. JSON拾遗

    最近开始翻<JavaScript高级程序设计>,其实很多大师级人物都推荐这本书为JavaScript入门级读物.因为第20章 JSON篇幅最小,而且以前也写过一篇JSON的总结JSON简介 ...

  2. Web性能优化-合并js与css,减少请求

    Web性能优化已经是老生常谈的话题了, 不过笔者也一直没放在心上,主要的原因还是项目的用户量以及页面中的js,css文件就那几个,感觉没什么优化的.人总要进步的嘛,最近在被angularjs吸引着,也 ...

  3. Node基础:url查询参数解析之querystring

    模块概述 在nodejs中,提供了querystring这个模块,用来做url查询参数的解析,使用非常简单. 模块总共有四个方法,绝大部分时,我们只会用到 .parse(). .stringify() ...

  4. js异步状态监控

    说明:写这篇文章,是希望被吐槽的. 一.背景 在做报表页面的时候,页面上有很多的异步加载,而设计的loading是个全局的,一个页面就有一个. 控制loading什么时候出现,什么时候消失,要实时的知 ...

  5. js滚动到底部事件

    window.innerHeight表示窗口高度 $(document).height()返回文档高度 $(document).scrollTop()返回滚动条与顶部的距离,在最上部时为0,在最下部时 ...

  6. isinstance

    class Foo: pass obj = Foo() isinstance(obj,Foo) class Foo: pass obj = Foo() isinstance(obj ,Foo) pri ...

  7. MySQL删除/更新数据时报1175错误

    今天删除MySQL数据库中的一条记录的时候,一直不能删除,提示错误信息如下: Error Code: 1175. You are using safe update mode and you trie ...

  8. applicationContext.xml和dispatcher-servlet.xml的区别

    在SpringMVC项目中我们一般会引入applicationContext.xml和dispatcher-servlet.xml两个配置文件,这两个配置文件具体的区别是什么呢? Spring 官方文 ...

  9. 基于Oracle的Mybatis 批量插入

    项目中会遇到这样的情况,一次性要插入多条数据到数据库中,有两种插入方法: 方法一: Mybatis本身只支持逐条插入,比较笨的方法,就是遍历一个List,循环中逐条插入,比如下面这段代码 for(Da ...

  10. 提供RESTful服务

    RESTful广泛运用于互联网服务,而在企业应用中,大部分场景仍然是RPC服务,这是由于企业应用的业务复杂性造成的.但是基于SOAP的RPC服务也存在很多的弊端,比如服务异步处理比较麻烦,大部分RPC ...