[PointCloud] GICP
泛化的ICP算法,通过协方差矩阵起到类似于权重的作用,消除某些不好的对应点在求解过程中的作用。不过可以囊括Point to Point,Point to Plane的ICP算法,真正的是泛化的ICP。牛!
CC中的GICP插件
void qLxPluginPCL::doSpraseRegistration()
{
assert(m_app);
if (!m_app)
return; const ccHObject::Container& selectedEntities = m_app->getSelectedEntities();
size_t selNum = selectedEntities.size();
if (selNum!=2)
{
m_app->dispToConsole("Please select two cloud!",ccMainAppInterface::ERR_CONSOLE_MESSAGE);
return;
} ccHObject* ent = selectedEntities[0];
assert(ent);
if (!ent || !ent->isA(CC_TYPES::POINT_CLOUD))
{
m_app->dispToConsole("Select a real point cloud!",ccMainAppInterface::ERR_CONSOLE_MESSAGE);
return;
}
ccHObject* ent2 = selectedEntities[1];
assert(ent2);
if (!ent2 || !ent2->isA(CC_TYPES::POINT_CLOUD))
{
m_app->dispToConsole("Select a real point cloud!",ccMainAppInterface::ERR_CONSOLE_MESSAGE);
return;
} ccPointCloud* m_target_cloud = static_cast<ccPointCloud*>(ent);
ccPointCloud* m_Source_cloud = static_cast<ccPointCloud*>(ent2); //input cloud
unsigned count = m_target_cloud->size();
bool hasNorms = m_target_cloud->hasNormals();
CCVector3 bbMin, bbMax;
m_target_cloud->getBoundingBox(bbMin,bbMax);
const CCVector3d& globalShift = m_target_cloud->getGlobalShift();
double globalScale = m_target_cloud->getGlobalScale(); cc3DNdtdlg dlg;
if (!dlg.exec())
return; double maxCorrDis =1;
maxCorrDis= dlg.getVoxelGridsize();
pcl::PointCloud<PointXYZ>::Ptr pcl_t_cloud (new pcl::PointCloud<PointXYZ>);
pcl::PointCloud<PointXYZ>::Ptr pcl_s_cloud (new pcl::PointCloud<PointXYZ>);
try
{
//
unsigned pointCount = m_target_cloud->size();
pcl_t_cloud->resize(pointCount); for (unsigned i = 0; i < pointCount; ++i)
{
const CCVector3* P = m_target_cloud->getPoint(i);
pcl_t_cloud->at(i).x = static_cast<float>(P->x);
pcl_t_cloud->at(i).y = static_cast<float>(P->y);
pcl_t_cloud->at(i).z = static_cast<float>(P->z);
}
//
pointCount = m_Source_cloud->size();
pcl_s_cloud->resize(pointCount); for (unsigned i = 0; i < pointCount; ++i)
{
const CCVector3* P = m_Source_cloud->getPoint(i);
pcl_s_cloud->at(i).x = static_cast<float>(P->x);
pcl_s_cloud->at(i).y = static_cast<float>(P->y);
pcl_s_cloud->at(i).z = static_cast<float>(P->z);
}
}
catch(...)
{
//any error (memory, etc.)
pcl_t_cloud.reset();
pcl_s_cloud.reset();
}
pcl::search::KdTree<pcl::PointXYZ>::Ptr tree1 (new pcl::search::KdTree<pcl::PointXYZ>);
tree1->setInputCloud (pcl_t_cloud);
pcl::search::KdTree<pcl::PointXYZ>::Ptr tree2 (new pcl::search::KdTree<pcl::PointXYZ>);
tree2->setInputCloud (pcl_s_cloud);
pcl::PolygonMesh::Ptr mesh(new pcl::PolygonMesh);
// reconstruct meshes for source and target
pcl::OrganizedFastMesh<pcl::PointXYZ> fast_mesh;
fast_mesh.setInputCloud(pcl_t_cloud); //设置输入点云
/* ofm.setIndices(cloudInd);*/ //设置输入点云索引
fast_mesh.setMaxEdgeLength(0.1); //设置多边形网格最大边长
fast_mesh.setTriangulationType(pcl::OrganizedFastMesh<pcl::PointXYZ>::TRIANGLE_ADAPTIVE_CUT);//设置网格类型
fast_mesh.setTrianglePixelSize(1); //设置三角形边长 1表示链接相邻点作为边长
//fast_mesh.storeShadowedFaces(false); //设置是否存储阴影面
fast_mesh.setSearchMethod(tree1);
fast_mesh.reconstruct(*mesh);
// compute normals and covariances for source and target
pcl::PointCloud<pcl::Normal>::Ptr normals(new pcl::PointCloud<pcl::Normal>);
boost::shared_ptr<std::vector<Eigen::Matrix3d, Eigen::aligned_allocator<Eigen::Matrix3d> >> target_covariances(new std::vector<Eigen::Matrix3d, Eigen::aligned_allocator<Eigen::Matrix3d> >);
pcl::features::computeApproximateNormals(*pcl_t_cloud, mesh->polygons, *normals);
pcl::features::computeApproximateCovariances(*pcl_t_cloud, *normals, *target_covariances); fast_mesh.setInputCloud(pcl_s_cloud);
/* ofm.setIndices(cloudInd);*/ //设置输入点云索引
fast_mesh.setMaxEdgeLength(1.0); //设置多边形网格最大边长
fast_mesh.setTriangulationType(pcl::OrganizedFastMesh<pcl::PointXYZ>::TRIANGLE_ADAPTIVE_CUT);//设置网格类型
fast_mesh.setTrianglePixelSize(1); //设置三角形边长 1表示链接相邻点作为边长
fast_mesh.storeShadowedFaces(false); //设置是否存储阴影面
fast_mesh.setSearchMethod(tree2);
fast_mesh.reconstruct(*mesh);
// compute normals and covariances for source and target
pcl::PointCloud<pcl::Normal>::Ptr normalst(new pcl::PointCloud<pcl::Normal>);
boost::shared_ptr<std::vector<Eigen::Matrix3d, Eigen::aligned_allocator<Eigen::Matrix3d>>> source_covariances(new std::vector<Eigen::Matrix3d, Eigen::aligned_allocator<Eigen::Matrix3d> >);
pcl::features::computeApproximateNormals(*pcl_s_cloud, mesh->polygons, *normalst);
pcl::features::computeApproximateCovariances(*pcl_s_cloud, *normalst, *source_covariances);
// setup Generalized-ICP
pcl::GeneralizedIterativeClosestPoint<pcl::PointXYZ, pcl::PointXYZ> gicp;
gicp.setMaxCorrespondenceDistance(maxCorrDis);
gicp.setInputSource(pcl_s_cloud);
gicp.setInputTarget(pcl_t_cloud);
/*gicp.setSourceCovariances(source_covariances);
gicp.setTargetCovariances(target_covariances);*/
// run registration and get transformation
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_out (new pcl::PointCloud<pcl::PointXYZ>);
gicp.align(*cloud_out);
Eigen::Matrix4f transform = gicp.getFinalTransformation();
int pointCount = cloud_out->size(); //static_cast<size_t>(sm_cloud ? sm_cloud->width * sm_cloud->height : 0); ccPointCloud* ccCloud =new ccPointCloud();
if (!ccCloud->reserve(static_cast<unsigned>(pointCount)))
return ;
for (size_t i = 0; i < pointCount; ++i)
{
CCVector3 P(cloud_out->at(i).x,cloud_out->at(i).y,cloud_out->at(i).z);
ccCloud->addPoint(P);
}
ccCloud->setName(QString("GICP"));
ccColor::Rgb col = ccColor::Generator::Random();
ccCloud->setRGBColor(col);
ccCloud->showColors(true);
ccCloud->setPointSize(1);
ccHObject* group = 0;
if (!group)
group = new ccHObject(QString("GICP(%1)").arg(ent2->getName()));
group->addChild(ccCloud);
group->setVisible(true);
m_app->addToDB(group);
}
近似特征值计算
这个的原理被想复杂了,就是特征值分解的逆步骤,形成了三个正交的向量,epsilon是最小的特征值,法向量是最小的特征向量。
本来求法向量的过程就是根据近邻的k个点,利用主成分分析PCA进行计算得到特征值最小的那个特征向量作为法向量。
/** \brief Compute GICP-style covariance matrices given a point cloud and
* the corresponding surface normals.
* \param[in] cloud Point cloud containing the XYZ coordinates,
* \param[in] normals Point cloud containing the corresponding surface normals.
* \param[out] covariances Vector of computed covariances.
* \param[in] Optional: Epsilon for the expected noise along the surface normal (default: 0.001)
*/
template <typename PointT, typename PointNT> inline void
computeApproximateCovariances(const pcl::PointCloud<PointT>& cloud,
const pcl::PointCloud<PointNT>& normals,
std::vector<Eigen::Matrix3d, Eigen::aligned_allocator<Eigen::Matrix3d> >& covariances,
double epsilon = 0.001)
{
assert(cloud.points.size() == normals.points.size()); int nr_points = static_cast<int>(cloud.points.size());
covariances.resize(nr_points);
for (int i = 0; i < nr_points; ++i)
{
Eigen::Vector3d normal(normals.points[i].normal_x,
normals.points[i].normal_y,
normals.points[i].normal_z); // compute rotation matrix
Eigen::Matrix3d rot;
Eigen::Vector3d y;
y << 0, 1, 0;
rot.row(2) = normal;
y = y - normal(1) * normal;
y.normalize();
rot.row(1) = y;
rot.row(0) = normal.cross(rot.row(1)); // comnpute approximate covariance
Eigen::Matrix3d cov;
cov << 1, 0, 0,
0, 1, 0,
0, 0, epsilon;
covariances[i] = rot.transpose()*cov*rot;
}
} }
[PointCloud] GICP的更多相关文章
- ros pcl sensor::pointcloud2 转换成pcl::pointcloud
#include <pcl_conversions/pcl_conversions.h> #include <pcl/point_types.h> #include <p ...
- How to publish a pointcloud of ros msgs in a topic from a pcd file?
How to publish a pointcloud of ros msgs in a topic from a pcd file? Two methods 1. modified source 2 ...
- [转]ROS 传感器消息及RVIZ可视化Laserscan和PointCloud
https://blog.csdn.net/yangziluomu/article/details/79576508 https://answers.ros.org/question/60239/ho ...
- 论文笔记:(2019)LDGCNN : Linked Dynamic Graph CNN-Learning on PointCloud via Linking Hierarchical Features
目录 摘要 一.引言 A.基于视图的方法 B.基于体素的方法 C.基于几何的方法 二.材料 三.方法 A.问题陈述 B.图生成 C.图特征提取 D.变换不变函数 E.LDGCNN架构 F.冻结特征提取 ...
- pointcloud(点云)与mesh(面元)模型的区别
点元与面元
- PointCloud及其经典论文介绍
这篇博客会介绍点云的基本知识,重点介绍最近两年发表的部分经典论文,有什么建议欢迎留言! 点云基本介绍 点云是某个坐标系下的点的数据集,包含了丰富的信息,可以是三维坐标X,Y,Z.颜色.强度值.时间等等 ...
- pcl曲面网格模型的三种显示方式
pcl网格模型有三种可选的显示模式,分别是面片模式(surface)显示,线框图模式(wireframe)显示,点模式(point)显示.默认为面片模式进行显示.设置函数分别为: void pcl:: ...
- pcl计算样点法向并显示
利用最小二乘法估计样点表面法向,并显示 #include <pcl/point_types.h> #include <pcl/io/pcd_io.h> #include < ...
- pcl曲面重建模块-poisson重建算法示例
poisson曲面重建算法 pcl-1.8测试通过 #include <iostream> #include <pcl/common/common.h> #include &l ...
随机推荐
- xcode 编译opencv ios容易出现的错误
(1)出现 "std::__1::basic_ostream<char, std::__1::char_traits<char> >::flush()"之类 ...
- 51Nod 1002 数字三角形 Label:水水水 && 非学习区警告
一个高度为N的由正整数组成的三角形,从上走到下,求经过的数字和的最大值. 每次只能走到下一层相邻的数上,例如从第3层的6向下走,只能走到第4层的2或9上. 5 8 4 3 6 9 7 ...
- GO语言练习:网络编程 ICMP 示例
1.代码 2.编译及运行 1.Go语言网络编程:ICMP示例代码 icmptest.go package main import ( "fmt" "net" & ...
- 李洪强iOS经典面试题131
培训机构量产iOS程序员,导致了现在iOS就业的浮躁和困难.但是技术好的人仍然不愁工作,而一些想进入行业捞一笔就走的人,势必在今年这种艰难就业形式下,被迫淘汰,转行. look.jpg 这张图是git ...
- android-ListView控件的使用
一.深刻理解ListView 1.职责:将数据填充到布局.响应用户操作 2.ListView的实现需要:布局.数据源.适配器 3.常见适配器: ArrayAdapter<T> 用来绑定一 ...
- 2016HUAS暑假集训训练题 G - Oil Deposits
Description The GeoSurvComp geologic survey company is responsible for detecting underground oil dep ...
- eclipse.ini
-startup plugins/org.eclipse.equinox.launcher_1..jar --launcher.library plugins/org.eclipse.equinox. ...
- xshell的快捷键(非常实用)
删除 ctrl + d 删除光标所在位置上的字符相当于VIM里x或者dl ctrl + h 删除光标所在位置前的字符相当于VIM里hx或者dh ctrl + k 删除光标 ...
- Datatable转换Json
#region Datatable转换为Json /// <summary> /// Datatable转换为Json /// </su ...
- php判断字符串A是否含有字符串B
<?php if (preg_match ("/PHP/", "PHP is the web scripting language of choice." ...