[POJ3295]Tautology

试题描述

WFF 'N PROOF is a logic game played with dice. Each die has six faces representing some subset of the possible symbols K, A, N, C, E, p, q, r, s, t. A Well-formed formula (WFF) is any string of these symbols obeying the following rules:

  • p, q, r, s, and t are WFFs
  • if w is a WFF, Nw is a WFF
  • if w and x are WFFs, Kwx, Awx, Cwx, and Ewx are WFFs.

The meaning of a WFF is defined as follows:

  • p, q, r, s, and t are logical variables that may take on the value 0 (false) or 1 (true).
  • K, A, N, C, E mean and, or, not, implies, and equals as defined in the truth table below.
Definitions of K, A, N, C, and E
     w  x   Kwx   Awx    Nw   Cwx   Ewx
  1  1   1   1    0   1   1
  1  0   0   1    0   0   0
  0  1   0   1    1   1   0
  0  0   0   0    1   1   1

tautology is a WFF that has value 1 (true) regardless of the values of its variables. For example, ApNp is a tautology because it is true regardless of the value of p. On the other hand, ApNq is not, because it has the value 0 for p=0, q=1.

You must determine whether or not a WFF is a tautology.

输入

Input consists of several test cases. Each test case is a single line containing a WFF with no more than 100 symbols. A line containing 0 follows the last case.

输出

For each test case, output a line containing tautology or not as appropriate.

输入示例

ApNp
ApNq

输出示例

tautology
not

数据规模及约定

见“输入

题解

枚举 p, q, r, s, t 的值,然后带进去递归求出这个串的值,如果都为真那么就是“tautology”,否则是“not”。

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <stack>
#include <vector>
#include <queue>
#include <cstring>
#include <string>
#include <map>
#include <set>
using namespace std; #define maxn 110
#define maxal 300
char S[maxn];
int ord[maxal];
bool val[10]; struct Info {
int p, v;
Info() {}
Info(int _, int __): p(_), v(__) {}
} ;
Info check(int l) {
if(islower(S[l])) return Info(l + 1, val[ord[S[l]]]);
if(S[l] == 'N') {
Info t;
t = check(l + 1);
return Info(t.p, t.v ^ 1);
}
if(S[l] == 'K') {
Info t, t2;
t = check(l + 1);
t2 = check(t.p);
return Info(t2.p, t.v & t2.v);
}
if(S[l] == 'A') {
Info t, t2;
t = check(l + 1);
t2 = check(t.p);
return Info(t2.p, t.v | t2.v);
}
if(S[l] == 'C') {
Info t, t2;
t = check(l + 1);
t2 = check(t.p);
return Info(t2.p, (t.v && !t2.v) ? 0 : 1);
}
if(S[l] == 'E') {
Info t, t2;
t = check(l + 1);
t2 = check(t.p);
return Info(t2.p, t.v == t2.v);
}
return Info(0, 0);
} int main() {
ord['p'] = 0;
ord['q'] = 1;
ord['r'] = 2;
ord['s'] = 3;
ord['t'] = 4;
while(scanf("%s", S + 1) == 1) {
int all = (1 << 5) - 1, n = strlen(S + 1);
if(n == 1 && S[1] == '0') break;
bool ok = 1;
for(int i = 0; i <= all; i++) {
for(int j = 0; j < 5; j++)
val[j] = (i >> j & 1);
if(!check(1).v){ ok = 0; break; }
}
puts(ok ? "tautology" : "not");
} return 0;
}

[POJ3295]Tautology的更多相关文章

  1. POJ-3295 Tautology (构造)

    https://vjudge.net/problem/POJ-3295 题意 有五种运算符和五个参数,现在给你一个不超过100字符的算式,问最后结果是否恒为1? 分析 首先明确各运算符的意义,K(&a ...

  2. poj3295 Tautology —— 构造法

    题目链接:http://poj.org/problem?id=3295 题意: 输入由p.q.r.s.t.K.A.N.C.E共10个字母组成的逻辑表达式, 其中p.q.r.s.t的值为1(true)或 ...

  3. POJ3295——Tautology

    Tautology Description WFF 'N PROOF is a logic game played with dice. Each die has six faces represen ...

  4. POJ3295 Tautology(枚举)

    题目链接. 分析: 最多有五个变量,所以枚举所有的真假值,从后向前借助于栈验证是否为永真式. #include <iostream> #include <cstring> #i ...

  5. poj3295 Tautology , 计算表达式的值

    给你一个表达式,其包括一些0,1变量和一些逻辑运算法,让你推断其是否为永真式. 计算表达式的经常使用两种方法:1.递归: 2.利用栈. code(递归实现) #include <cstdio&g ...

  6. POJ3295 Tautology(栈+枚举)

    Description WFF 'N PROOF is a logic game played with dice. Each die has six faces representing some ...

  7. ACM学习历程——POJ3295 Tautology(搜索,二叉树)

    Description WFF 'N PROOF is a logic game played with dice. Each die has six faces representing some ...

  8. POJ3295 Tautology 解题报告

    直接上分析: 首先 弄清各种大写字母的操作的实质 K 明显 是 and   & A 是 or      | N 是 not   ! C  由表格注意到 当 w<=x 时 值为1 E  当 ...

  9. POJ3295 Tautology重言式

    Tautology 思路很简单,对于p.q.r.s.t暴力枚举是0还是1,判断即可.判断时像写表达式求值那样用栈.为了方便可以从后往前,因为最后一个肯定不是运算.那几个奇奇怪怪的函数可以找规律然后转为 ...

随机推荐

  1. netty socket 客服端编程

    package com.ming.netty.nio; 2 3 import io.netty.bootstrap.Bootstrap; 4 import io.netty.channel.Chann ...

  2. Tomcat 的三种(bio,nio.apr) 高级 Connector 运行模式及apr配置

    转: http://www.oschina.net/question/54100_16195omcat的运行模式有3种.修改他们的运行模式.3种模式的运行是否成功,可以看他的启动控制台,或者启动日志. ...

  3. Json数据可视化

    主要借助JSON.stringfy( value [, replacer] [, space] ). 一.参考文献 1.json数据可视化: http://www.cnblogs.com/lvdaba ...

  4. C# Language Specification

    https://msdn.microsoft.com/en-us/library/aa645596(v=vs.71).aspx

  5. Windows Server 2008修改IE浏览器级别便于使用

    1.降低IE安全级别  Win 2008默认IE的安全级别为“高”,并且不能随意调整,在浏览网页的时候有些会有一些限制,可以打开注册表编辑器进行设置,定位到 [HKEY_LOCAL_MACHINE\S ...

  6. phpize 扩展GD库 安装 ! 环境--centos 7 +nginx 1.7.11+php 5.6.7

    使用phpize编译GD库安装,先安装前置库libjpeg libpng zlib  freetype等 都是下面php编译的几个选项 先看php编译的选项: --with-gd=DIR       ...

  7. Python Paramiko模块与MySQL数据库操作

    Paramiko模块批量管理:通过调用ssh协议进行远程机器的批量命令执行. 要使用paramiko模块那就必须先安装这个第三方模块,仅需要在本地上安装相应的软件(python以及PyCrypto), ...

  8. jquery 匿名函数的区别

    下面两个定义函数的方法是等价的 var test = function(val){alert(val);} function test(val){alert(val);} 都是定义了一个test()方 ...

  9. 修改hosts

  10. SCP 命令(转)

    \ svn 删除所有的 .svn文件 find . -name .svn -type d -exec rm -fr {} \; linux之cp/scp命令+scp命令详解   名称:cp 使用权限: ...