今天来做UFLDL的第二个实验,向量化。我们都知道,在matlab里面基本上如果使用for循环,程序是会慢的一逼的(可以说基本就运行不下去)所以在这呢,我们需要对程序进行向量化的处理,所谓向量化就是将matlab里面所有的for循环用矩阵运算的方法实现,在这里呢,因为之前的实验我已经是按照向量化的形式编写的代码,所以这里我只把我对代码修改的部分发上来供大家参考吧。本文为本人原创,参考了UFLDL的教程,是我自己个人对于这一系列教程的理解以及自己的实验结果。非盈利性质网站转载请在文章开头处著名本文作者:77695,来源http://www.cnblogs.com/cj695/。盈利性质网站转载请与作者联系,联系方式在文章后面。如未联系,本人将通过一切可能且合法的途径追缴相应稿酬。请在转载时保留此声明。

这是我们使用的数据集,采用的是MNIST数据库里面的手写字符。读取数据集有一定的方法,这个现成的代码在UFLDL的教程里面是可以下载的。读取完数据集显示效果如下:

最后训练得到的结果如下

代码第一处要修改的是在train的地方,要把参数修改为这次实验的参数:

visibleSize = 28*28;   % number of input units
hiddenSize = 14*14; % number of hidden units
sparsityParam = 0.1; % desired average activation of the hidden units.
% (This was denoted by the Greek alphabet rho, which looks like a lower-case "p",
% in the lecture notes).
lambda = 0.003; % weight decay parameter
beta = 3; % weight of sparsity penalty term

其次在computeNumericalGradient的地方,把梯度检测数目减小:

for i=1 :min(size(theta,1),2)
e = zeros(size(theta));
e(i)=EPSILON;
cha=(J(theta+e)-J(theta-e));
numgrad(i)=cha/(2*EPSILON);
end

最后,取样图片,使用UFLDL提供的现成的读取MNIST数据库的函数即可:

function patches = sampleIMAGES()

img=loadMNISTImages('train-images.idx3-ubyte');
patches=img(:,10001:20000);
% patches = normalizeData(patches);
% 在实现手写字符识别时,是不需要对其做归一化处理的
end

注意:在做手写字符识别时,使用MNIST的数据库是不需要再对数据做归一化处理的,如果做了归一化处理,结果可能反而会出错。

上图是做了归一化之后的结果,可以很明显的看到,归一化之后,每一个数字的格子之间的背景亮度是有一定差距的。

使用归一化之后的数据经性训练,最后得到的结果如下图:

可以看到,这个结果与之前的结果比的话,并不能足矣用这些基来表达整个数据,因此是不好的。

为什么会出现这样一个结果呢,我们来看一下归一化之后的结果:

下面是没有归一化的结果

可以看到没有归一化数据是从0-0.99的,变化范围大,而归一化后,数据变化范围只有0.5,这显然是不对的。要清楚的是,MINIST数据集本身就已经对数据进行了归一化的处理因此我们就不用画蛇添足了。

深度学习入门教程UFLDL学习实验笔记二:使用向量化对MNIST数据集做稀疏自编码的更多相关文章

  1. 深度学习入门教程UFLDL学习实验笔记一:稀疏自编码器

    UFLDL即(unsupervised feature learning & deep learning).这是斯坦福网站上的一篇经典教程.顾名思义,你将在这篇这篇文章中学习到无监督特征学习和 ...

  2. 深度学习入门教程UFLDL学习实验笔记三:主成分分析PCA与白化whitening

    主成分分析与白化是在做深度学习训练时最常见的两种预处理的方法,主成分分析是一种我们用的很多的降维的一种手段,通过PCA降维,我们能够有效的降低数据的维度,加快运算速度.而白化就是为了使得每个特征能有同 ...

  3. 【特别推荐】Node.js 入门教程和学习资源汇总

    这篇文章与大家分享一批很有用的 Node.js 入门教程和学习资源.Node 是一个服务器端的 JavaScript 解释器,它将改变服务器应该如何工作的概念.它的目标是帮助程序员构建高度可伸缩的应用 ...

  4. Node.js 入门教程和学习资源汇总

    这篇文章与大家分享一批很有用的 Node.js 入门教程和学习资源.Node 是一个服务器端的 JavaScript 解释器,它将改变服务器应该如何工作的概念.它的目标是帮助程序员构建高度可伸缩的应用 ...

  5. ROS与深度相机入门教程-在ROS使用kinect v1摄像头

    ROS与深度相机入门教程-在ROS使用kinect v1摄像头 说明: 介绍在ros安装和使用kinect v1摄像头 介绍freenect包 安装驱动 deb安装 $ sudo apt-get in ...

  6. Elasticsearch入门教程(六):Elasticsearch查询(二)

    原文:Elasticsearch入门教程(六):Elasticsearch查询(二) 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:h ...

  7. TensorFlow和深度学习入门教程(TensorFlow and deep learning without a PhD)【转】

    本文转载自:https://blog.csdn.net/xummgg/article/details/69214366 前言 上月导师在组会上交我们用tensorflow写深度学习和卷积神经网络,并把 ...

  8. 《Python爬虫学习系列教程》学习笔记

    http://cuiqingcai.com/1052.html 大家好哈,我呢最近在学习Python爬虫,感觉非常有意思,真的让生活可以方便很多.学习过程中我把一些学习的笔记总结下来,还记录了一些自己 ...

  9. Python学习入门教程,字符串函数扩充详解

    因有用户反映,在基础文章对字符串函数的讲解太过少,故写一篇文章详细讲解一下常用字符串函数.本文章是对:程序员带你十天快速入门Python,玩转电脑软件开发(三)中字符串函数的详解与扩充. 如果您想学习 ...

随机推荐

  1. 8、面向对象以及winform的简单运用(事件与winform入门)

    事件 Visual studio中对可视化窗体控件的事件处理机理: 所有的.NET Framework可视化窗体控件的预定义事件,都会某一对应的“事件名+Handler”委托类型的变量.与此事件相关的 ...

  2. iOS - 获取手机中所有图片

    1 #import <AssetsLibrary/AssetsLibrary.h> /** 6 * ALAssetsLibrary.h 代表资源库(所有的视频,照片) 7 ALAssets ...

  3. Node on Mac 初步

    安装node之前 1.之前在windows平台上安装node,直接下载一个安装文件得了.但是mac osx是基于unix架构的嘛,跟linux很像啊. 在linux上安装我们多习惯用命令行工具安装啊, ...

  4. 如何解决mysql数据库X小时无连接自动关闭

    windows下打开my.ini,增加: interactive_timeout=28800000 wait_timeout=28800000 专家解答:MySQL是一个小型关系型数据库管理系统,由于 ...

  5. 畅所欲言第1期 - 从Viola&Jones的人脸检测说起

    转载自http://c.blog.sina.com.cn/profile.php?blogid=ab0aa22c890006v0 不少人认识我或者听说我的名字都是因为我过去做的关于人脸检测的工作,那么 ...

  6. 直接运行可执行文件linux终端一闪而过

    运行elasticsearch的时候进入bin目录,ela 然后tab提示的内容中没有e..s..,很奇怪,然后我直接双击运行es,终端一闪而过,我就手动打开终端, ./elasticsearch 这 ...

  7. mvc:resources

    springmvc 配置静态文件 http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/mv ...

  8. 【poj3020】 Antenna Placement

    http://poj.org/problem?id=3020 (题目链接) 题意 给出一个矩阵,矩阵中只有‘*’和‘o’两种字符,每个‘*’可以向它上下左右四个方位上同为‘*’的点连一条边,求最少需要 ...

  9. codeforces 715B:Complete The Graph

    Description ZS the Coder has drawn an undirected graph of n vertices numbered from 0 to n - 1 and m ...

  10. BZOJ 3110 [Zjoi2013]K大数查询

    Description 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c 如果是2 a b c形式,表示询问从第a个位置到第b个位 ...