【BZOJ】1002: [FJOI2007]轮状病毒(DP+规律+高精度)
http://www.lydsy.com/JudgeOnline/problem.php?id=1002

其实我还是看题解的,而且看了题解也没明白那公式怎么来的T_T,先水过了先把。。。。以后研究一下这个矩阵。
以后要看:周冬《生成树的计数及其应用》,http://vfleaking.blog.163.com/blog/static/17480763420119685112649/
答案是f[i]=f[i-1]*3-f[i-2]+2
要用高精度,(这货以后好好写啊,卡了我好久调试
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
#define for1(i,a,n) for(i=a;i<=n;++i)
#define for2(i,a,n) for(i=a;i<n;++i)
#define for3(i,a,n) for(i=a;i>=n;--i)
#define for4(i,a,n) for(i=a;i>n;--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
#define read(a) scanf("%d", &a)
#define print(a) printf("%d", a); struct bignum {
int d[10000];
}f[105]; bignum mul(bignum a, const int &k) {
for(int i=1; i<=a.d[0]; ++i) a.d[i]*=k;
for(int i=1; i<=a.d[0]; ++i)
a.d[i+1]+=a.d[i]/10, a.d[i]%=10;
if(a.d[a.d[0]+1]) ++a.d[0];
return a;
}
bignum minus(bignum a, const bignum &b) {
a.d[1]+=2; int j=1;
while(a.d[j]>=10) a.d[j]%=10, a.d[++j]++;
for(int i=1; i<=a.d[0]; ++i) {
a.d[i]-=b.d[i];
while(a.d[i]<0) a.d[i]+=10, --a.d[i+1];
}
while(!a.d[a.d[0]]) --a.d[0];
return a;
}
bignum plus(bignum a, const int &k) {
a.d[1]+=k; int i=1;
while(a.d[i]>=10) a.d[i+1]+=a.d[i]/10, a.d[i]%=10;
if(a.d[a.d[0]+1]) ++a.d[0];
return a;
} int main() {
int n;
read(n);
f[1].d[1]=1; f[2].d[1]=5;
f[1].d[0]=f[2].d[0]=1;
int i;
for1(i, 3, n)
f[i]=minus(mul(f[i-1], 3), f[i-2]);
for3(i, f[n].d[0], 1) printf("%d", f[n].d[i]);
return 0;
}
Description
给定n(N<=100),编程计算有多少个不同的n轮状病毒。
Input
第一行有1个正整数n。
Output
将编程计算出的不同的n轮状病毒数输出
Sample Input
Sample Output
HINT
Source
【BZOJ】1002: [FJOI2007]轮状病毒(DP+规律+高精度)的更多相关文章
- BZOJ 1002 FJOI2007 轮状病毒 递推+高精度
题目大意:轮状病毒基定义如图.求有多少n轮状病毒 这个递推实在是不会--所以我选择了打表找规律 首先执行下面程序 #include<cstdio> #include<cstring& ...
- bzoj 1002 [FJOI2007]轮状病毒 高精度&&找规律&&基尔霍夫矩阵
1002: [FJOI2007]轮状病毒 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 2234 Solved: 1227[Submit][Statu ...
- 【BZOJ】1002: [FJOI2007]轮状病毒 递推+高精度
1002: [FJOI2007]轮状病毒 Description 给定n(N<=100),编程计算有多少个不同的n轮状病毒. Input 第一行有1个正整数n. Output 将编程计算出的不同 ...
- BZOJ 1002: [FJOI2007]轮状病毒【生成树的计数与基尔霍夫矩阵简单讲解+高精度】
1002: [FJOI2007]轮状病毒 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 5577 Solved: 3031[Submit][Statu ...
- 生成树的计数(基尔霍夫矩阵):BZOJ 1002 [FJOI2007]轮状病毒
1002: [FJOI2007]轮状病毒 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 3928 Solved: 2154[Submit][Statu ...
- BZOJ 1002 [FJOI2007]轮状病毒
1002: [FJOI2007]轮状病毒 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 3106 Solved: 1724[Submit][Statu ...
- bzoj1002 [FJOI2007]轮状病毒——找规律+高精度
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1002 打表找规律,似乎是这样:https://blog.csdn.net/fzhvampir ...
- bzoj 1002 [FJOI2007]轮状病毒——打表找规律
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1002 看 Zinn 的博客:https://www.cnblogs.com/Zinn/p/9 ...
- 【刷题】BZOJ 1002 [FJOI2007]轮状病毒
Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子 和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道.如下 ...
- BZOJ [FJOI2007]轮状病毒 (找规律)
1002: [FJOI2007]轮状病毒 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 6009 Solved: 3282[Submit][Statu ...
随机推荐
- 字符编码浅识:关于Unicode与UTF-8
参考自阮一峰博客:http://www.ruanyifeng.com/blog/2007/10/ascii_unicode_and_utf-8.html Unicode只是一个符号集,它只规定了符号的 ...
- iOS 一个工程中引用其他工程时要注意Skip Install选项
当主工程引用其他工程,以便使用他们生成的库的时候,在发布时,主要注意这个选项.这个选项的说明如下 Activating this setting when deployment locations a ...
- php中重写和final关键字的使用
为什么把重写和final放在一起,原因就是一条:final的意思是不可更改的,也就是说final定义的东西是不可改变的,下面具体来说一下. 来看一段简单的代码: class BaseClass { f ...
- 利用 FFmpeg 和 ImageMagick, AVI 转 GIF(不失真)
利用[TMPGEnc 4.0 XPress] 或 [TMPGEnc Video Mastering Works 5] 生成 AVI 这个视频编辑软件,可对每个帧进行操作 1.生成每个帧的 PNG ff ...
- elk+redis分布式分析nginx日志
一.elk套件介绍 ELK 由 ElasticSearch . Logstash 和 Kiabana 三个开源工具组成.官方网站: https://www.elastic.co/products El ...
- Linux UGO
U=USER G=GROUP O=OTHERS 最前面的’-’,表示文件为普通类型 第一组的‘rw-’,表示文件属主对文件具有读和写权限,但没有执行权限 第二组的’rw-’,表示同组其他用户对文件具有 ...
- loadingDialog
1.dialog布局 dialog_loading.xml <?xml version="1.0" encoding="utf-8"?> <L ...
- MVC中session创建并获取问题
有两个ActionResult分别为A和B,如下 public ActionResult A() { Session["test"]="123"; return ...
- jquery easy ui 1.3.4 事件与方法的使用(3)
3.1.easyui事件 easyui事件可以在构建的时候就通过属性方式添加上去,比如在panel收缩的时候添加一个事件,在构建的时候代码如下 onCollapse: function () { al ...
- android 兼容性测试 CTS 测试过程(实践测试验证通过)
source: http://blog.csdn.net/jianguo_liao19840726/article/details/7222814 写这个博客的时候是为了记忆,建议大家还是看官方的说明 ...