opencv学习笔记(一)IplImage, CvMat, Mat 的关系
opencv学习笔记(一)IplImage, CvMat, Mat 的关系
opencv中常见的与图像操作有关的数据容器有Mat,cvMat和IplImage,这三种类型都可以代表和显示图像,但是,Mat类型侧重于计算,数学性较高,openCV对Mat类型的计算也进行了优化。而CvMat和IplImage类型更侧重于“图像”,opencv对其中的图像操作(缩放、单通道提取、图像阈值操作等)进行了优化。在opencv2.0之前,opencv是完全用C实现的,但是,IplImage类型与CvMat类型的关系类似于面向对象中的继承关系。实际上,CvMat之上还有一个更抽象的基类----CvArr,这在源代码中会常见。
1. IplImage
opencv中的图像信息头,该结构体定义:
typedef struct _IplImage
{
int nSize; /* IplImage大小 */
int ID; /* 版本 (=0)*/
int nChannels; /* 大多数OPENCV函数支持1,2,3 或 4 个通道 */
int alphaChannel; /* 被OpenCV忽略 */
int depth; /* 像素的位深度: IPL_DEPTH_8U, IPL_DEPTH_8S, IPL_DEPTH_16U,
IPL_DEPTH_16S, IPL_DEPTH_32S, IPL_DEPTH_32F and IPL_DEPTH_64F 可支持 */ char colorModel[]; /* 被OpenCV忽略 */
char channelSeq[]; /* 被OpenCV忽略 */
int dataOrder; /* 0 - 交叉存取颜色通道, 1 - 分开的颜色通道. cvCreateImage只能创建交叉存取图像 */
int origin; /* 0 - 顶—左结构,1 - 底—左结构 (Windows bitmaps 风格) */
int align; /* 图像行排列 (4 or 8). OpenCV 忽略它,使用 widthStep 代替 */ int width; /* 图像宽像素数 */
int height; /* 图像高像素数*/ struct _IplROI *roi; /* 图像感兴趣区域. 当该值非空只对该区域进行处理 */
struct _IplImage *maskROI; /* 在 OpenCV中必须置NULL */
void *imageId; /* 同上*/
struct _IplTileInfo *tileInfo; /*同上*/ int imageSize; /* 图像数据大小(在交叉存取格式下imageSize=image->height*image->widthStep),单位字节*/
char *imageData; /* 指向排列的图像数据 */
int widthStep; /* 排列的图像行大小,以字节为单位 */
int BorderMode[]; /* 边际结束模式, 被OpenCV忽略 */
int BorderConst[]; /* 同上 */ char *imageDataOrigin; /* 指针指向一个不同的图像数据结构(不是必须排列的),是为了纠正图像内存分配准备的 */
} IplImage;
dataOrder中的两个取值:交叉存取颜色通道是颜色数据排列将会是BGRBGR...的交错排列。分开的颜色通道是有几个颜色通道就分几个颜色平面存储。roi是IplROI结构体,该结构体包含了xOffset,yOffset,height,width,coi成员变量,其中xOffset,yOffset是x,y坐标,coi代表channel of interest(感兴趣的通道),非0的时候才有效。访问图像中的数据元素,分间接存储和直接存储,当图像元素为浮点型时,(uchar *) 改为 (float *):
/*间接存取*/
IplImage* img=cvLoadImage("lena.jpg", );
CvScalar s; /*sizeof(s) == img->nChannels*/
s=cvGet2D(img,i,j); /*get the (i,j) pixel value*/
cvSet2D(img,i,j,s); /*set the (i,j) pixel value*/ /*宏操作*/
/*
可以使用opencv定义的宏来提取象素值
CV_IMAGE_ELEM是一个宏,
如果是IPImage类型,则为:
#define CV_IMAGE_ELEM( image, elemtype, row, col ) \
(((elemtype*)((image)->imageData + (image)->widthStep*(row)))[(col)]) //image参数为IplImage *指针,elemtype为数据类型,常为uchar,row和col分别是数据矩阵的行和列
如果是Mat类型,则为:
#define CV_MAT_ELEM( mat, elemtype, row, col ) \
(*(elemtype*)CV_MAT_ELEM_PTR_FAST( mat, row, col, sizeof(elemtype))) 灰度图像为单通道,访问时使用CV_IMAGE_ELEM(image,uchar,i,j);
三通道的彩色图像,访问时使用CV_IMAGE_ELEM(image,uchar,i,j*3);CV_IMAGE_ELEM(image,uchar,i,j*3+1);CV_IMAGE_ELEM(image,uchar,i,j*3+2);访问三个通道的值。 注意:
1、初学者容易将i和j写反了,这样就出现了访问出界的错误,i的上限是img->height,而j的上限是img->width。
2、OpenCV中CvRect和CvPoint等常用的结构使用的是点的坐标:
cvRect(int x,int y,int width,int height)和cvPoint(int x,int y)中的x上限是img->width,y上限是img->height。
3、也就是说,如果(i,j)这个点对应的像素值为CV_IMAGE_ELEM(image,uchar,i,j),那么它对应的点就是cvPoint(j,i)。
*/
IplImage* img; //malloc memory by cvLoadImage or cvCreateImage
for(int row = ; row < img->height; row++)
{
for (int col = ; col < img->width; col++)
{
b = CV_IMAGE_ELEM(img, UCHAR, row, col * img->nChannels + );
g = CV_IMAGE_ELEM(img, UCHAR, row, col * img->nChannels + );
r = CV_IMAGE_ELEM(img, UCHAR, row, col * img->nChannels + );
}
} /*直接存取*/
IplImage* img; //malloc memory by cvLoadImage or cvCreateImage
uchar b, g, r; // 3 channels
for(int row = ; row < img->height; row++)
{
for (int col = ; col < img->width; col++)
{
b = ((uchar *)(img->imageData + row * img->widthStep))[col * img->nChannels + ];
g = ((uchar *)(img->imageData + row * img->widthStep))[col * img->nChannels + ];
r = ((uchar *)(img->imageData + row * img->widthStep))[col * img->nChannels + ];
}
}
初始化使用IplImage *,是一个指向结构体IplImage的指针:
IplImage * cvLoadImage(const char * filename, int iscolor CV_DEFAULT(CV_LOAD_IMAGE_COLOR)); //load images from specified image
IplImage * cvCreateImage(CvSize size, int depth, int channels); //allocate memory
2.CvMat
首先,我们需要知道,第一,在OpenCV中没有向量(vector)结构。任何时候需要向量,都只需要一个列矩阵(如果需要一个转置或者共轭向量,则需要一个行矩阵)。第二,OpenCV矩阵的概念与我们在线性代数课上学习的概念相比,更抽象,尤其是矩阵的元素,并非只能取简单的数值类型,可以是多通道的值。
- OpenCV有针对矩阵操作的C语言函数. 许多其他方法提供了更加方便的C++接口,其效率与OpenCV一样.
- OpenCV将向量作为1维矩阵处理.
- 矩阵按行存储,每行有4字节的校整.
CvMat 的结构:
typedef struct CvMat
{
int type;
int step; /*用字节表示行数据长度*/
int* refcount; /*内部访问*/
union {
uchar* ptr;
short* s;
int* i;
float* fl;
double* db;
} data; /*数据指针*/
union {
int rows;
int height;
};
union {
int cols;
int width;
};
} CvMat; /*矩阵结构头*/
创建CvMat数据:
CvMat * cvCreateMat(int rows, int cols, int type); /*创建矩阵头并分配内存*/
CV_INLine CvMat cvMat((int rows, int cols, int type, void* data CV_DEFAULT); /*用已有数据data初始化矩阵*/
CvMat * cvInitMatHeader(CvMat * mat, int rows, int cols, int type, void * data CV_DEFAULT(NULL), int step CV_DEFAULT(CV_AUTOSTEP)); /*(用已有数据data创建矩阵头)*/
对矩阵数据进行访问:
/*间接访问*/
/*访问CV_32F1和CV_64FC1*/
cvmSet( CvMat* mat, int row, int col, double value);
cvmGet( const CvMat* mat, int row, int col ); /*访问多通道或者其他数据类型: scalar的大小为图像的通道值*/
CvScalar cvGet2D(const CvArr * arr, int idx0, int idx1); //CvArr只作为函数的形参void cvSet2D(CvArr* arr, int idx0, int idx1, CvScalar value); /*直接访问: 取决于数组的数据类型*/
/*CV_32FC1*/
CvMat * cvmat = cvCreateMat(, , CV_32FC1);
cvmat->data.fl[row * cvmat->cols + col] = (float)3.0; /*CV_64FC1*/
CvMat * cvmat = cvCreateMat(, , CV_64FC1);
cvmat->data.db[row * cvmat->cols + col] = 3.0; /*一般对于单通道*/
CvMat * cvmat = cvCreateMat(, , CV_64FC1);
CV_MAT_ELEM(*cvmat, double, row, col) = 3.0; /*double是根据数组的数据类型传入,这个宏不能处理多通道*/ /*一般对于多通道*/
if (CV_MAT_DEPTH(cvmat->type) == CV_32F)
CV_MAT_ELEM_CN(*cvmat, float, row, col * CV_MAT_CN(cvmat->type) + ch) = (float)3.0; // ch为通道值
if (CV_MAT_DEPTH(cvmat->type) == CV_64F)
CV_MAT_ELEM_CN(*cvmat, double, row, col * CV_MAT_CN(cvmat->type) + ch) = 3.0; // ch为通道值 /*多通道数组*/
/*3通道*/
for (int row = ; row < cvmat->rows; row++)
{
p = cvmat ->data.fl + row * (cvmat->step / );
for (int col = ; col < cvmat->cols; col++)
{
*p = (float) row + col;
*(p+) = (float)row + col + ;
*(p+) = (float)row + col + ;
p += ;
}
}
/*2通道*/
CvMat * vector = cvCreateMat(,, CV_32SC2);CV_MAT_ELEM(*vector, CvPoint, , ) = cvPoint(,);
/*4通道*/
CvMat * vector = cvCreateMat(,, CV_64FC4);CV_MAT_ELEM(*vector, CvScalar, , ) = CvScalar(, , , );
复制矩阵操作:
/*复制矩阵*/
CvMat* M1 = cvCreateMat(,,CV_32FC1);
CvMat* M2;
M2=cvCloneMat(M1);
3.Mat
Mat是opencv2.0推出的处理图像的新的数据结构,现在越来越有趋势取代之前的cvMat和lplImage,相比之下Mat最大的好处就是能够更加方便的进行内存管理,不再需要程序员手动管理内存的释放。opencv2.3中提到Mat是一个多维的密集数据数组,可以用来处理向量和矩阵、图像、直方图等等常见的多维数据。
class CV_EXPORTS Mat
{ public: /*..很多方法..*/
/*............*/ int flags;(Note :目前还不知道flags做什么用的)
int dims; /*数据的维数*/
int rows,cols; /*行和列的数量;数组超过2维时为(-1,-1)*/
uchar *data; /*指向数据*/
int * refcount; /*指针的引用计数器; 阵列指向用户分配的数据时,指针为 NULL /* 其他成员 */
... };
从以上结构体可以看出Mat也是一个矩阵头,默认不分配内存,只是指向一块内存(注意读写保护)。初始化使用create函数或者Mat构造函数,以下整理自opencv2.3.1 Manual:
Mat(nrows, ncols, type, fillValue]);
M.create(nrows, ncols, type); 例子:
Mat M(,,CV_32FC2,Scalar(,)); /*创建复数矩阵1+3j*/
M.create(, , CV_8UC()); /*创建15个通道的8bit的矩阵*/ /*创建100*100*100的8位数组*/
int sz[] = {, , };
Mat bigCube(, sz, CV_8U, Scalar:all()); /*现成数组*/
double m[][] = {{a, b, c}, {d, e, f}, {g, h, i}};
Mat M = Mat(, , CV_64F, m).inv(); /*图像数据*/
Mat img(Size(,),CV_8UC3);
Mat img(height, width, CV_8UC3, pixels, step); /*const unsigned char* pixels,int width, int height, int step*/ /*使用现成图像初始化Mat*/
IplImage* img = cvLoadImage("greatwave.jpg", );
Mat mtx(img,); // convert IplImage* -> Mat; /*不复制数据,只创建一个数据头*/
访问Mat的数据元素:
/*对某行进行访问*/
Mat M;
M.row() = M.row() + M.row() * ; /*第5行扩大三倍加到第3行*/ /*对某列进行复制操作*/
Mat M1 = M.col();
M.col().copyTo(M1); /*第7列复制给第1列*/ /*对某个元素的访问*/
Mat M;
M.at<double>(i,j); /*double*/
M.at(uchar)(i,j); /*CV_8UC1*/
Vec3i bgr1 = M.at(Vec3b)(i,j) /*CV_8UC3*/
Vec3s bgr2 = M.at(Vec3s)(i,j) /*CV_8SC3*/
Vec3w bgr3 = M.at(Vec3w)(i,j) /*CV_16UC3*/ /*遍历整个二维数组*/
double sum = 0.0f;
for(int row = ; row < M.rows; row++)
{
const double * Mi = M.ptr<double>(row);
for (int col = ; col < M.cols; col++)
sum += std::max(Mi[j], .);
} /*STL iterator*/
double sum=;
MatConstIterator<double> it = M.begin<double>(), it_end = M.end<double>();
for(; it != it_end; ++it)
sum += std::max(*it, .);
Mat可进行Matlab风格的矩阵操作,如初始化的时候可以用initializers,zeros(), ones(), eye(). 除以上内容之外,Mat还有有3个重要的方法:
Mat mat = imread(const String* filename); // 读取图像
imshow(const string frameName, InputArray mat); // 显示图像
imwrite (const string& filename, InputArray img); //储存图像
4. CvMat, Mat, IplImage之间的互相转换
IpIImage -> CvMat
/*cvGetMat*/
CvMat matheader;
CvMat * mat = cvGetMat(img, &matheader);
/*cvConvert*/
CvMat * mat = cvCreateMat(img->height, img->width, CV_64FC3);
cvConvert(img, mat) IplImage -> Mat
Mat::Mat(const IplImage* img, bool copyData=false);/*default copyData=false,与原来的IplImage共享数据,只是创建一个矩阵头*/
例子:
IplImage* iplImg = cvLoadImage("greatwave.jpg", );
Mat mtx(iplImg); /* IplImage * -> Mat,共享数据; or : Mat mtx = iplImg;*/ Mat -> IplImage
Mat M
IplImage iplimage = M; /*只创建图像头,不复制数据*/ CvMat -> Mat
Mat::Mat(const CvMat* m, bool copyData=false); /*类似IplImage -> Mat,可选择是否复制数据*/ Mat -> CvMat
例子(假设Mat类型的imgMat图像数据存在):
CvMat cvMat = imgMat;/*Mat -> CvMat, 类似转换到IplImage,不复制数据只创建矩阵头
opencv学习笔记(一)IplImage, CvMat, Mat 的关系的更多相关文章
- IplImage, CvMat, Mat 的关系
IplImage, CvMat, Mat 的关系 转载来源:http://www.cnblogs.com/summerRQ/articles/2406109.html opencv中常见的与图像操作有 ...
- [转] IplImage, CvMat, Mat 的关系
拼装小火车 的原文 IplImage, CvMat, Mat 的关系 opencv中常见的 与图像操作有关的数据容器有Mat,cvMat和IplImage,这三种类型都可以代表和显示图像,但是,Mat ...
- OpenCV中IplImage/CvMat/Mat转化关系
原文链接:http://www.cnblogs.com/summerRQ/articles/2406109.html 如对内容和版权有何疑问,请拜访原作者或者通知本人. opencv中常见的与图像操作 ...
- opencv基础知识------IplImage, CvMat, Mat 的关系和相互转换
Mat,cvMat和IplImage这三种类型都可以代表和显示图像,但是,Mat类型侧重于计算,数学性较高,openCV对Mat类型的计算也进行了优化.而CvMat和IplImage类型更侧重于“图像 ...
- IplImage, CvMat, Mat 的关系和相互转换(转)
(看到的一篇非常好的文章,讲opencv内部类之间的关系的.) opencv中常见的与图像操作有关的数据容器有Mat,cvMat和IplImage,这三种类型都可以代表和显示图像,但是,Mat类型侧重 ...
- OpenCV学习笔记(四) Mat的简单操作
转自:OpenCV Tutorial: core 模块. 核心功能 改变图像对比度和亮度:convertTo 可以把 看成源图像像素,把 看成输出图像像素.这样一来,调整亮度和对比度的方法可表示为 ...
- opencv学习笔记(九)Mat 访问图像像素的值
对图像的像素进行访问,可以实现空间增强,反色,大部分图像特效系列都是基于像素操作的.图像容器Mat是一个矩阵的形式,一般情况下是二维的.单通道灰度图一般存放的是<uchar>类型,其数据存 ...
- opencv学习笔记(七)SVM+HOG
opencv学习笔记(七)SVM+HOG 一.简介 方向梯度直方图(Histogram of Oriented Gradient,HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子 ...
- 【opencv学习笔记五】一个简单程序:图像读取与显示
今天我们来学习一个最简单的程序,即从文件读取图像并且创建窗口显示该图像. 目录 [imread]图像读取 [namedWindow]创建window窗口 [imshow]图像显示 [imwrite]图 ...
随机推荐
- IQ测试
1.4个人过桥,只能两两过桥,且只有一盏灯,必须有灯才能过桥,4个人过桥时间分别为1,2,5,10分钟,最短多少时间可以过桥? 答案:1和2先走,1再返回,花3分钟.5和10走,2回去,花了3+10+ ...
- POJ1258Agri-Net(prime基础)
Agri-Net Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 46811 Accepted: 19335 Descri ...
- destroy-method="close"的作用
destroy-method="close"的作用是当数据库连接不使用的时候,就把该连接重新放到数据池中,方便下次使用调用.
- AppSettingManager
public class AppSettingManager { public static bool Update(string key, string value) { try { var con ...
- DROP TABLE ** CASCADE CONSTRAINTS PURGE删除表的时候级联删除从表外键
1.关于 cascade constraints 假设A为主表(既含有某一主键的表),B为从表(即引用了A的主键作为外键). 则当删除A表时,如不特殊说明,则 drop table A 系统会出现错误 ...
- Pb (数据存储单位)
PB (数据存储单位) 编辑 pb指petabyte,它是较高级的存储单位,其上还有EB,ZB,YB等单位. 它等于1,125,899,906,842,624(2的50次方)字节,“大约”是一千个te ...
- jQuery特效
基础特效 方法 描述 hide() 立即隐藏jQuery对象内的所有元素 hide(time).hide(time, easing) 在指定的时间内以动画方式隐藏jQuery对象内的所有元素,并可选一 ...
- smarty 操作符号,大于、小于。。。
eq相等,6 w% x7 w6 |3 _ne.neq不相等,( i" }" ~( `# V( t& C, k; [gt大于,lt小于,gte.ge大于等于,lte.le 小 ...
- 最长公共子序列(LCS)
简单的DP. f[i][j]表示序列a中前i个中,序列b中前b个中,组成的最长公共子序列的长度. DP方程: if(a[i-1]==b[j-1]) f[i][j]=f[i-1][j-1]+1; el ...
- cocos2dx的内存管理机制
首先我们必须说一下c++中变量的内存空间的分配问题,我们在c++中写一个类,可以在栈上分配内存空间也可以使用new在堆上分配内存空间,如果类对象是在栈上分配的内存空间,这个内存空间的管理就不是我们的事 ...