Computer Systems A Programmer's Perspective Second Edition

Running throughout the system is a collection of electrical conduits called
buses that carry bytes of information back and forth between the components. Buses
are typically designed to transfer fixed-sized chunks of bytes known as words. The
number of bytes in a word (the word size) is a fundamental system parameter that
varies across systems. Most machines today have word sizes of either 4 bytes (32
bits) or 8 bytes (64 bits). For the sake of our discussion here, we will assume a word
size of 4 bytes, and we will assume that buses transfer only one word at a time.
 
Every computer has a word size, indicating the nominal size of integer and pointer
data. Since a virtual address is encoded by such a word, the most important system
parameter determined by the word size is the maximum size of the virtual address
space. That is, for a machine with a w-bit word size, the virtual addresses can range
from 0 to 2w−1, giving the program access to at most 2w bytes.
Most personal computers today have a 32-bit word size. This limits the virtual
address space to 4 gigabytes (written 4 GB), that is, just over 4×109 bytes.
Although this is ample space for most applications, we have reached the point where
many large-scale scientific and database applications require larger amounts of
storage. Consequently, high-end machines with 64-bit word sizes are becoming in-
creasingly common as storage costs decrease. As hardware costs drop over time,
even desktop and laptop machines will switch to 64-bit word sizes, and so we will
consider the general case of aw-bit word size, as well as the special cases of w=32
and w=64.

word size的更多相关文章

  1. Word Search

    Given a 2D board and a word, find if the word exists in the grid. The word can be constructed from l ...

  2. [LeetCode] Minimum Unique Word Abbreviation 最短的独一无二的单词缩写

    A string such as "word" contains the following abbreviations: ["word", "1or ...

  3. [LeetCode] Valid Word Abbreviation 验证单词缩写

    Given a non-empty string s and an abbreviation abbr, return whether the string matches with the give ...

  4. [LeetCode] Maximum Product of Word Lengths 单词长度的最大积

    Given a string array words, find the maximum value of length(word[i]) * length(word[j]) where the tw ...

  5. [LeetCode] Unique Word Abbreviation 独特的单词缩写

    An abbreviation of a word follows the form <first letter><number><last letter>. Be ...

  6. [LeetCode] Add and Search Word - Data structure design 添加和查找单词-数据结构设计

    Design a data structure that supports the following two operations: void addWord(word) bool search(w ...

  7. [LeetCode] Word Break II 拆分词句之二

    Given a string s and a dictionary of words dict, add spaces in s to construct a sentence where each ...

  8. [LeetCode] Word Ladder 词语阶梯

    Given two words (beginWord and endWord), and a dictionary, find the length of shortest transformatio ...

  9. [LeetCode] Word Search 词语搜索

    Given a 2D board and a word, find if the word exists in the grid. The word can be constructed from l ...

随机推荐

  1. BZOJ 3224: Tyvj 1728 普通平衡树 treap

    3224: Tyvj 1728 普通平衡树 Description 您需要写一种数据结构(可参考题目标题),来维护一些数,其中需要提供以下操作:1. 插入x数2. 删除x数(若有多个相同的数,因只删除 ...

  2. 百度之星复赛 1004 / hdu5715 二分dp+trie

    XOR 游戏 Problem Description   众所周知,度度熊喜欢XOR运算[(XOR百科)](http://baike.baidu.com/view/674171.htm). 今天,它发 ...

  3. img 默认是行内元素,它旁边的空格是会保留的

    img 默认是行内元素,它旁边的空格是会保留的.因此图片宽度设置百分百后下面会有点找不出原因的间隙. 解决办法:img{display:block}

  4. ajax请求node.js接口时出现 No 'Access-Control-Allow-Origin' header is present on the requested resource错误

    ajax请求node.js接口出现了如下的错误: XMLHttpRequest cannot load http://xxx.xxx.xx.xx:8888/getTem?cityId=110105&a ...

  5. Objective-C专题,是学习iOS开发的前奏(转)

    第一个OC的类 来源:http://www.cnblogs.com/mjios/archive/2013/04/06/3002814.html 本文目录 一.语法简介 二.用Xcode创建第一个OC的 ...

  6. WPF MVVM模式下的无阻塞刷新探讨

    很多时候我们需要做一个工作,在一个方法体里面,读取大数据绑定到UI界面,由于长时间的读取,读取独占了线程域,导致界面一直处于假死状态.例如,当应用程序开始读取Web资源时,读取的时效是由网络链路的速度 ...

  7. 最短路(Bellman_Ford) POJ 3259 Wormholes

    题目传送门 /* 题意:一张有双方向连通和单方向连通的图,单方向的是负权值,问是否能回到过去(权值和为负) Bellman_Ford:循环n-1次松弛操作,再判断是否存在负权回路(因为如果有会一直减下 ...

  8. BZOJ3735 : [Pa2013]Konduktorzy

    二分一个最大的位置$x$,计算$t=\sum_{i=1}^k\lfloor\frac{x}{a_i}\rfloor$. 如果$t\leq n$,那么说明就算全部检票员都走到了这里,也不够$n$个指令, ...

  9. BZOJ4304 : 道路改建

    首先求出SCC,把图缩点成一个DAG. 通过拓扑排序+DP求出: dp0[x]:从x点出发能到的点的集合. dp1[x]:能到x的点的集合. 对于一条边x->y,将它改为双向边后,形成的新的SC ...

  10. 一份spring配置文件及其详解

    本文来自CSDN博客,转载请标明出处:http://blog.csdn.net/axu20/archive/2009/10/14/4668188.aspx 1.基本配置:<?xml versio ...