• 什么是OpenMP?
    “OpenMP (Open Multi-Processing) is an application programming interface (API) that supports multi-platform shared memory multiprocessing programming in C, C++ and Fortran on many architectures, including Unix and Microsoft Windows platforms. It consists of a set of compiler directives, library routines, and environment variables that influence run-time behavior. ”
    简单来说,OpenMP是一个可以应用于多种平台的共享内存式并行计算的接口。
  • Openmp的工作模式:
    Openmp的工作模式为串行-并行-串行…。一开始的主线程是串行,当在需要并行的时候(这时候程序中应该有相应的Openmp指令语句),多个线程开始一起工作。若当前的并行块结束(仍旧由相应的Opemp指令语句来控制)时,又重新回到单一的主线程。如此可往复继续。在一个四核心cpu上运行Openmp程序(并行块的线程数默认是核心数目,这里即为4个线程),程序处于主线程时cpu利用率为100%,但是当程序进入并行块时所有的核心都会参与进来,cpu利用率会达到400%。如果程序的主要运算部分都处于并行区域,则绝大部分时间cpu都处于400%的工作状态,这样便大大提高cpu的利用率。
  • Openmp程序的结构:
    正如上面所说,编写Openmp程序只需要在已有的串行程序上稍加修改即可:在并行开始和结束的地方加上Openmp语句引导并行的开始和结束。这些引导语句本身处于注释语句的地位,必须在编译时加上Openmp并行参数才能使其生效。如果不加编译参数,编译出来的程序仍旧是串行程序。
    Openmp是最容易实现的并行方式。
  • Openmp程序的编写:
    下面以fortran语言为例说明Openmp程序的编写(对c语言和fortran语言,都可以参考本文最后给出的openmp教程)。一般的格式为

    !$omp parallel CLAUSE
    !$omp DIRECTION
    [ structured block of code ]
    !$omp end DIRECTION
    !$omp end parallel

    其中DIRECTION是Openmp指令,有sections,do等,指定并行行为。中间的

    [ structured block of code ]

    即是需要并线的程序块。除了上面的称为DIRECTION的指令语句外,Openmp还需要称为CLAUSE的从句对并行进行限制和说明。比如,需要对私有变量进行声明时就需要用到private从句(这是经常要遇到的,后面会以例子说明)。在fortran的串行编译下,以“!”打头的都处于屏蔽状态是不起作用的。加了openmp编译参数后才会生效。

    我在程序编写中用到最多的是do指令,偶尔用一下sections。do指令通常用来并行化do循环。本来用一个线程来执行的长的do循环被分割成几个部分让多个线程同时执行,这样就节省了时间。sections指令通常用来将前后没有依赖关系的程序块(也即原本不分先后,你换下顺序也无所谓)并行化。因为无关联,所以可以同时执行。

    可以说,若程序主要用来做计算,掌握了do和sections这两个指令足矣!

  • 简单的程序例子:
    1.Sections 指令的应用:

    !$OMP PARALLEL SHARED(A,B,C), PRIVATE(I)   !//Paralell块开始
    !$OMP SECTIONS  !//Sections开始
    !$OMP SECTION     !//第一个section
    DO I = 1, N/2
    C(I) = A(I) + B(I)
    END DO
    !$OMP SECTION    !//第二个section
    DO I = 1+N/2, N
    C(I) = A(I) + B(I)
    END DO
    !$OMP END SECTIONS NOWAIT       !//Sections结束
    !$OMP END PARALLEL     !//Paralell块结束

    这个并行语句将本来从1到N的循环手动分为两个部分并行执行。上面的shared,private就是从句(clause),声明A,B,C为公有的,而循环指标I是私有的。因为两个section同时执行,都会对I进行改变,所以两个section的循环指标必须彼此独立,不能是同一个变量。PRIVATE会自动将这个会引发冲突的变量按需生成多个拷贝以供使用。最后的!$OMP END SECTIONS NOWAIT语句告诉两个线程可各自自行结束,无需相互等待。

    2.Do 指令的应用:
    上面用Section实现的功能完全可以用Do来实现:

    !$OMP PARALLEL SHARED(A,B,C), PRIVATE(I)    !//Paralell块开始
    !$OMP DO    !//Do的并行开始
    DO I = 1, N
    C(I) = A(I) + B(I)
    END DO
    !$OMP END DO   !//Do的并行结束
    !$OMP END PARALLEL   !//Paralell块结束

    Do循环本来是从1到N,现在有多少个线程就分为多少个部分执行,比上面的section更方便智能。不用担心循环次数N不能被线程数整除~。一般情况下,各个线程均分循环次数,但是在某些循环指标下运算可能比较快,所以各个线程的运算时间可能不尽相同。这时候如果需要让各个线程都结束了才能再往下(没有NOWAIT),快的线程就必须等待慢的线程。为了解决这个问题需要加上schedule从句,首行变为如下:

    !$OMP PARALLEL SHARED(A,B,C), PRIVATE(I),SCHEDULE(DYNAMIC)

    这个SCHEDULE(DYNAMIC)从句告诉程序动态调整并线方式,那些任务轻松运算快的线程会自动去帮任务重运算慢的线程,力争所有线程同时完成任务。

    关于Do的积累计算,如累加,需要加上REDUCTION从句:

    C=0.d0
    !$OMP PARALLEL SHARED(A,C), PRIVATE(I),REDUCTION(+:C)
    !$OMP DO
    DO I = 1, N
    C =C+ A(I)
    END DO
    !$OMP END DO
    !$OMP END PARALLEL

    这里将累加分为几个部分由多个线程进行运算,由于各个线程都在0.d0的基础上开始计算它该算的部分,所以最后必须将各部分计算的结果再次求和。REDUCTION(+:C)从句就实现了这个效果。类似的叠乘等等用类似写法,只需把“:”前的运算符改为乘法“*”即可。

  • 一些注意问题:
    1.尤其要注意的问题就是变量的私有和公有问题。其实只要把握好一个原则,即如果这个变量有可能会被不同的线程同时进行写操作(这不是你希望看到的),则这个变量就应该声明为私有。一般来说,并行体中临时用到的一些中间变量应该是私有的。

    2.据我的经验,Fortran中如果不特别声明,变量都是默认公有的。这一点可以用DEFAULT(PRIVATE/SHARED)从句强行改变。循环指标默认是私有的,无需自己另外声明。放在common域中的变量都是全局的,若要将这些全局变量私有化,可使用threadprivate指令(参见文章:OpenMP并行编程:threadprivate指令)。

    3.并行引导语句可以简化,但要注意前后配对。比如上面那个累加的例子可以这样写:

    C=0.d0
    !$OMP PARALLEL DO SHARED(A,C), PRIVATE(I),REDUCTION(+:C)
    DO I = 1, N
    C =C+ A(I)
    END DO
    !$OMP END PARALLEL DO

    也即可以将从句加在指令之后。

    4.Fortran+Openmp的编译问题:
    一般来说,加上-openmp编译参数即可。如:
    ifort -openmp -o exe.out main.f
    gfortran用-fopenmp编译参数,g77和ifort一样用-openmp参数。
    如果用Makefile,将编译参数放在合适的地方。

    5.对于多重do循环,如果中间变量太多,对私有公有弄不清楚或者虽然清楚但是闲麻烦,可以保留最外层循环,将里面的循环在别处写成一个子函数或子程序 ,然后在此处调用。这样从结构上看就是对一重循环进行并行化,条理清楚不容易出错。当然,传递给子函数或子程序的参数一般是要声明私有的。

    6.将串行程序改为Openmp并行程序后,在加与不加-openmp编译参数的情况下分别编译并运算,比较并行与串行的结果,确保并行块没有改错。

    7.可以在并行开始前指定由多少个线程来并行。在单cpu单核心的机器上也可以(虽然没有实际意义,但可以用来调试并行程序):

    CALL OMP_SET_NUM_THREADS(scalar_integer_expression)

    其中scalar_integer_expression是个整形变量,指定并行的线程数目。

    8.Openmp对私有变量的大小有限制。所以当遇到这样的情况,一般就是由这个限制造成的:不加openmp并行时程序没有问题,加了openmp并行时出现断错误(segmentation fault),但是当把某个(一些)私有数组的维数变小时,段错误消失而且和串行时结果一致。
    解决办法(linux下,windows下另外search)如下:
    在linux终端执行
    ulimit -s unlimited ;export KMP_STACKSIZE=2048000
    后一个数字参数足够大即可。

OpenMP并行编程的更多相关文章

  1. OpenMP 并行编程

    OpenMP 并行编程 最近开始学习并行编程,目的是为了提高图像处理的运行速度,用的是VS2012自带的OpenMP. 如何让自己的编译器支持OpenMP: 1) 点击 项目属性页 2)点击 配置 3 ...

  2. OpenMP并行编程应用—加速OpenCV图像拼接算法

    OpenMP是一种应用于多处理器程序设计的并行编程处理方案,它提供了对于并行编程的高层抽象.仅仅须要在程序中加入简单的指令,就能够编写高效的并行程序,而不用关心详细的并行实现细节.减少了并行编程的难度 ...

  3. OpenMP共享内存并行编程详解

    实验平台:win7, VS2010 1. 介绍 平行计算机可以简单分为共享内存和分布式内存,共享内存就是多个核心共享一个内存,目前的PC就是这类(不管是只有一个多核CPU还是可以插多个CPU,它们都有 ...

  4. C++ OpenMp的并行编程

    基于OpenMp的并行编程 功能:并行处理比较耗时的for循环 在OpenMP中,对for循环并行化的任务调度使用schedule子句来实现: 使用格式:schedule(type[,size]) t ...

  5. 【并行计算】基于OpenMP的并行编程

    我们目前的计算机都是基于冯偌伊曼结构的,在MIMD作为主要研究对象的系统中,分为两种类型:共享内存系统和分布式内存系统,之前我们介绍的基于MPI方式的并行计算编程是属于分布式内存系统的方式,现在我们研 ...

  6. 并行编程OpenMP基础及简单示例

    OpenMP基本概念 OpenMP是一种用于共享内存并行系统的多线程程序设计方案,支持的编程语言包括C.C++和Fortran.OpenMP提供了对并行算法的高层抽象描述,特别适合在多核CPU机器上的 ...

  7. 在fortran下进行openmp并行计算编程

    最近写水动力的程序,体系太大,必须用并行才能算的动,无奈只好找了并行编程的资料学习了.我想我没有必要在博客里开一个什么并行编程的教程之类,因为网上到处都是,我就随手记点重要的笔记吧.这里主要是open ...

  8. OpenMP并行程序设计——for循环并行化详解

    在C/C++中使用OpenMP优化代码方便又简单,代码中需要并行处理的往往是一些比较耗时的for循环,所以重点介绍一下OpenMP中for循环的应用.个人感觉只要掌握了文中讲的这些就足够了,如果想要学 ...

  9. Openmp多线程编程练习

    环境配置 一般使用Visual Studio2019来作为openmp的编程环境 调试-->属性-->C/C++-->所有选项-->Openmp支持改为 是(可以使用下拉菜单) ...

随机推荐

  1. Java中如何使封装自己的类,建立并使用自己的类库?

    转自:http://blog.csdn.net/luoweifu/article/details/7281494 随着自己的编程经历的积累会发现往往自己在一些项目中写的类在别的项目中也会有多次用到.你 ...

  2. ava中Class.forName的作用浅谈

    转自:http://www.jb51.net/article/42648.htm Class.forName(xxx.xx.xx) 返回的是一个类 一.首先你要明白在java里面任何class都要装载 ...

  3. ListView系列(七)——Adapter内的onItemClick监听器四个arg参数 (转)

    举个例子你会理解的更快:X, Y两个listview,X里有1,2,3,4这4个item,Y里有a,b,c,d这4个item.如果你点了b这个item.如下: public void onItemCl ...

  4. IIS-如果外网访问不到 域名

    如果访问不到 域名 , 可以 给域名的目录 增加“IIS_IUSERS”权限.

  5. Android 文件夹命名规范 国际化资源

    Android 文件夹命名规范 国际化资源 android多国语言文件夹文件汇总如下: 中文(中国):values-zh-rCN 中文(台湾):values-zh-rTW 中文(香港):values- ...

  6. js:数据结构笔记5--链表

    数组: 其他语言的数组缺陷:添加/删除数组麻烦: js数组的缺点:被实现为对象,效率低: 如果要实现随机访问,数组还是更好的选择: 链表: 结构图: 基本代码: function Node (elem ...

  7. windows 服务安装脚本拾遗

    转自:http://blog.csdn.net/susubuhui/article/details/7881096 1.安装脚本 echo 请按任意键开始安装客户管理平台的后台服务 echo. pau ...

  8. android Intent.ACTION_SEND

    ACTION_SEND intent 可以把自己的应用添加到系统的发送(分享)列表中. <intent-filter> <action android:name="andr ...

  9. HDU 5044 (树链剖分+树状数组+点/边改查)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5044 题目大意:修改链上点,修改链上的边.查询所有点,查询所有边. 解题思路: 2014上海网赛的变 ...

  10. 【BZOJ】2330: [SCOI2011]糖果(差分约束+spfa)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2330 差分约束运用了最短路中的三角形不等式,即d[v]<=d[u]+w(u, v),当然,最长 ...