Ombrophobic Bovines

Time Limit: 1000MS
Memory Limit: 65536K

Total Submissions: 14519
Accepted: 3170

Description

FJ's cows really hate getting wet so much that the mere thought of getting caught in the rain makes them shake in their hooves. They have decided to put a rain siren on the farm to let them know when rain is approaching. They intend to create a rain evacuation plan so that all the cows can get to shelter before the rain begins. Weather forecasting is not always correct, though. In order to minimize false alarms, they want to sound the siren as late as possible while still giving enough time for all the cows to get to some shelter.
The farm has F (1 <= F <= 200) fields on which the cows graze. A set of P (1 <= P <= 1500) paths connects them. The paths are wide, so that any number of cows can traverse a path in either direction.
Some of the farm's fields have rain shelters under which the cows can shield themselves. These shelters are of limited size, so a single shelter might not be able to hold all the cows. Fields are small compared to the paths and require no time for cows to traverse.
Compute the minimum amount of time before rain starts that the siren must be sounded so that every cow can get to some shelter.

Input

* Line 1: Two space-separated integers: F and P
* Lines 2..F+1: Two space-separated integers that describe a field. The first integer (range: 0..1000) is the number of cows in that field. The second integer (range: 0..1000) is the number of cows the shelter in that field can hold. Line i+1 describes field i.
* Lines F+2..F+P+1: Three space-separated integers that describe a path. The first and second integers (both range 1..F) tell the fields connected by the path. The third integer (range: 1..1,000,000,000) is how long any cow takes to traverse it.

Output

* Line 1: The minimum amount of time required for all cows to get under a shelter, presuming they plan their routes optimally. If it not possible for the all the cows to get under a shelter, output "-1".

Sample Input

3 4
7 2
0 4
2 6
1 2 40
3 2 70
2 3 90
1 3 120

Sample Output

110
 
题意:有F块地,告诉你每块地牛的数量和雨篷能遮蔽的牛的数量,有P条路,告诉你每条路连接的两块地和牛走这条路所需要的时间。
     要你求让所有的牛都能在雨棚下躲雨的最短时间,如果做不到,输出

-1一下解释来自:http://www.2cto.com/kf/201406/312530.html

二分时间,然后把每个田地之间的最短距离用floyd最短路求出来。然后建立一个源点与汇点,将田地拆分成两个点,在距离之内的
进行连边,要单向连边。然后将源点与田地相连,权值为每个田地的牛的数目,再把另一边的田地与汇点相连,权值为每个田地最大
可避雨的牛的数目。拆开的田地之间权值可以为无穷大。

view code#include <cstdio>
#include <algorithm>
#include <cstring>
#include <iostream>
#include <queue>
using namespace std;
typedef long long ll;
const ll INF = 1LL<<60;
const int inf = 1<<30;
const int N = 500;
int n, F, P, pre[N], cur[N];
int s, t, d[N];
ll dis[N][N]; struct om
{
int num, cap;
}loc[N]; struct edge
{
int u, v, cap, flow, next;
edge(int u, int v, int cap, int flow, int next):u(u), v(v), cap(cap), flow(flow), next(next) {}
edge() {}
}e[N*N*4];
int ecnt; void floyd()
{
for(int k=1; k<=n; k++)
for(int i=1; i<=n; i++) if(dis[i][k]!=INF)
for(int j=1; j<=n; j++)
if(dis[k][j]!=INF && dis[i][j]>dis[i][k] + dis[k][j])
dis[i][j] = dis[i][k] + dis[k][j];
} void addedge(int u, int v, int w)
{
e[ecnt] = edge(u, v, w, 0, pre[u]);
pre[u] = ecnt++;
e[ecnt] = edge(v, u, 0, 0, pre[v]);
pre[v] = ecnt++;
} bool vis[N<<1];
bool BFS()
{
memset(vis, 0 ,sizeof(vis));
queue<int > q;
q.push(s);
d[s] = 0;
vis[s] = 1;
while(!q.empty())
{
int x = q.front(); q.pop();
for(int i = pre[x]; ~i; i=e[i].next)
{
int v = e[i].v;
if(!vis[v] && e[i].cap>e[i].flow)
{
vis[v] = 1;
d[v] = d[x] + 1;
q.push(v);
}
}
}
return vis[t];
} int DFS(int x, int c)
{
if(x==t || c==0) return c;
int flow = 0, f;
for(int &i=cur[x]; ~i; i=e[i].next)
{
int v = e[i].v;
if(d[x]+1==d[v] && (f=DFS(v,min(c,e[i].cap-e[i].flow)))>0)
{
e[i].flow += f;
e[i^1].flow -=f;
flow += f;
c -= f;
if(c==0) break;
}
}
return flow;
} ll Maxflow(int s, int t)
{
int flow = 0;
while(BFS())
{
for(int i=s; i<=t; i++) cur[i] = pre[i];
flow += DFS(s, inf);
}
return flow;
} bool is_ok(ll m, int sum)
{
s = 0, t = n*2+1;
memset(pre, -1, sizeof(pre));
ecnt = 0;
for(int i=1; i<=n; i++)
{
addedge(s, i, loc[i].num);
addedge(i+n, t, loc[i].cap);
} for(int i=1; i<=n; i++)
for(int j=1; j<=n; j++) if(dis[i][j]<=m)
addedge(i, j+n, inf); return Maxflow(s,t)>=sum;
} ll solve()
{
int sumn = 0, sumc = 0;
for(int i=1; i<=n; i++)
{
scanf("%d%d", &loc[i].num, &loc[i].cap);
sumn += loc[i].num;
sumc += loc[i].cap;
}
int u, v, w;
for(int i=1; i<=n; i++)
{
for(int j=1; j<=n; j++) dis[i][j] = INF;
dis[i][i] = 0;
}
for(int i=0; i<P; i++)
{
scanf("%d%d%d", &u, &v, &w);
if(w<dis[u][v]) dis[u][v] = dis[v][u] = w;
}
if(sumn > sumc) return -1;
floyd(); ll l = 0, r = 0, ans = -1;
for(int i=1; i<n; i++)
{
for(int j=i+1; j<=n; j++)
if(r<dis[i][j] && dis[i][j]!=INF) r = dis[i][j];
}
while(l<=r)
{
ll mid = (l+r)>>1;
if(is_ok(mid, sumn)) ans = mid, r = mid - 1;
else l = mid + 1;
// printf("ans = %d\n", ans);
}
return ans;
} int main()
{
// freopen("in", "r", stdin);
while(scanf("%d%d", &n, &P)>0) cout<<solve()<<endl;
return 0;
}

poj 2391 Ombrophobic Bovines(最大流+floyd+二分)的更多相关文章

  1. poj 2391 Ombrophobic Bovines, 最大流, 拆点, 二分, dinic, isap

    poj 2391 Ombrophobic Bovines, 最大流, 拆点, 二分 dinic /* * Author: yew1eb * Created Time: 2014年10月31日 星期五 ...

  2. POJ2391:Ombrophobic Bovines(最大流+Floyd+二分)

    Ombrophobic Bovines Time Limit: 1000MSMemory Limit: 65536K Total Submissions: 21660Accepted: 4658 题目 ...

  3. POJ 2391 Ombrophobic Bovines ( 经典最大流 && Floyd && 二分 && 拆点建图)

    题意 : 给出一些牛棚,每个牛棚都原本都有一些牛但是每个牛棚可以容纳的牛都是有限的,现在给出一些路与路的花费和牛棚拥有的牛和可以容纳牛的数量,要求最短能在多少时间内使得每头牛都有安身的牛棚.( 这里注 ...

  4. POJ 2391 Ombrophobic Bovines (Floyd + Dinic +二分)

    Ombrophobic Bovines Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11651   Accepted: 2 ...

  5. POJ 2391 Ombrophobic Bovines

    Ombrophobic Bovines Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 18623   Accepted: 4 ...

  6. POJ 2391 Ombrophobic Bovines ★(Floyd+二分+拆点+最大流)

    [题意]有n块草地,一些奶牛在草地上吃草,草地间有m条路,一些草地上有避雨点,每个避雨点能容纳的奶牛是有限的,给出通过每条路的时间,问最少需要多少时间能让所有奶牛进入一个避雨点. 和POJ2112很类 ...

  7. POJ 2391 Ombrophobic Bovines (二分答案+floyd+最大流)

    <题目链接> 题目大意: 给定一个有$n$个顶点和$m$条边的无向图,点$i$ 处有$A_i$头牛,点$i$ 处的牛棚能容纳$B_i$头牛,每条边有一个时间花费$t_i$(表示从一个端点走 ...

  8. POJ 2391 Ombrophobic Bovines(Floyd+二分+最大流)

    题目链接 题意:农场有F(1 <= F <= 200)片草地用于放牛,这些草地有P(1 <= P <= 1500)连接,农场的草地上有一些避雨点,奶牛们可以在避雨点避雨,但是避 ...

  9. POJ 2391 Ombrophobic Bovines(二分+拆点+最大流)

    http://poj.org/problem?id=2391 题意: 给定一个无向图,点i处有Ai头牛,点i处的牛棚能容纳Bi头牛,求一个最短时间T,使得在T时间内所有的牛都能进到某一牛棚里去. 思路 ...

随机推荐

  1. Winform开发框架之简易工作流设计

    一讲到工作流,很多人第一反应就是这个东西很深奥,有时候又觉得离我们较为遥远,确实完善的工作流设计很多方面,而正是由于需要兼顾很多方面,一般通用的工作流都难做到尽善尽美.微软也提供了几个版本的WF框架支 ...

  2. 【C#】OOP之多态那点事

    前言: 对菜鸟开发者的忠告:花一万个小时练习 Coding,不要浪费一万小时无谓地 Debugging(也就说看代码) 看上面的UML图,我们创建一个抽象的Instrument类,类中有一个抽象方法p ...

  3. knockoutjs+jquery.gridgroup 实现table数据加载和行合并

    目标 使用ajax获取到json数据后,通过ko绑定到表格,然后通过jquery.gridgroup插件实现行合并,效果如下: 步骤 1.引入插件 <script src="~/Scr ...

  4. 以对象的方式来访问xml数据表(一)

    所有实例代码都是以C#演示—— 在将如何以对象的方式来访问xml数据表之前,我们先来谈谈如何用xml文件作为数据库吧! 平时在开发一些小的应用的时候,需要一个数据库,这个时候虽然可以用SQL serv ...

  5. [moka同学笔记]yii2 activeForm 表单样式的修改

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAv4AAANcCAIAAACopDy/AAAgAElEQVR4nOzdfXAb52H4ef1veSatRV

  6. 【iOS】Quartz2D图形上下文

      一.绘图的完整过程 程序启动,显示自定义的view.当程序第一次显示在我们眼前的时候,程序会调用drawRect:方法,在里面获取了图形上下文(在内存中拥有了),然后利用图形上下文保存绘图信息,可 ...

  7. mysql创建数据库指定编码

    GBK: create database test2 DEFAULT CHARACTER SET gbk COLLATE gbk_chinese_ci; UTF8: CREATE DATABASE ` ...

  8. 文件无刷新上传(swfUpload与uploadify)

    文件无刷新上传并获取保存到服务器端的路径 遇到上传文件的问题,结合之前用到过的swfUpload,又找了一个无刷新上传文件的jquery插件uploadify,写篇博客记录一下分别介绍这两个插件的实现 ...

  9. thinkPHP学习笔记(2)

    1.调试模式 设置调试模式部分代码如下: <?php define('APP_DEBUG',TRUE); // 开启调试模式 常量定义代码 require '/ThinkPHP框架所在目录/Th ...

  10. SQL学习笔记:选取第N条记录

    Northwind数据库,选取价格第二高的产品. 有两种方法,一个是用Row_Number()函数: SELECT productname FROM ( productname, Row_Number ...