MySQL:InnoDB存储引擎的B+树索引算法
很早之前,就从学校的图书馆借了MySQL技术内幕,InnoDB存储引擎这本书,但一直草草阅读,做的笔记也有些凌乱,趁着现在大四了,课程稍微少了一点,整理一下笔记,按照专题写一些,加深一下印象,不枉读了一遍书。与此同时,也加深一下对MySQL的了解,认识了原理,对优化的原则才有把握,对问题的分析才有源头。
关于B+树数据结构
①InnoDB存储引擎支持两种常见的索引。
一种是B+树,一种是哈希。B+树中的B代表的意思不是二叉(binary),而是平衡(balance),因为B+树最早是从平衡二叉树演化来的,但是B+树又不是一个平衡二叉树。
同时,B+树索引并不能找到一个给定键值的具体行。B+树索引只能找到的是被查找数据行所在的页。然后数据库通过把页读入内存,再在内存中进行查找,最后得到查找的数据。
先从二分查找法说起:
二分查找法的基本思想是,将记录排序(假如从小到大排序),然后采用跳跃式的方式进行查找,以有序数列的中点位置为比较对象,如果要找的元素小于该中点元素,那么查找左半部分,如果要找的元素大于该中点元素,那么久找右半部分。比如一组排好序的数:5 10 19 22 30 55 59 60 90, 如果我要查找60这个数字,那么先找30,发现30小于60,那么找30右半部分的中点59,发现59还是小了,那么找59右边的数,从而找到了60,这样通过不断二分把查找需要的时间以指数级进行下降,算法效率到了Logn级别。
再说一下平衡二叉树:
这是一幅平衡二叉树,左子树的值总是小于根的值,右子树的值总是大于根的键值,因此可以通过中序遍历(以递归的方式按照左中右的顺序来访问子树),因此遍历以后得到的输出是9、17、28、35、39、56、65、87。这样,如果要查找键值为28的记录,先找到根,然后发现根大于28,找左子树,发现左子树的根17小于28,再找下一层右子树,然后找到28。通过了3次查找找到了需要找的节点。但是如果二叉树节点分布非常不均匀,就像第二张图那样,那么如果要查找39这个节点的话,查找效率和顺序查找就差不多了,最差的结果就是查找65,那么二叉搜索树就会完全退化成线性表。因此如果想要最大性能地构造一个二叉查找树,需要这颗二叉查找树是平衡的,平衡二叉树对于查找的性能是比较高的,但是不是最高的,只是接近最高的性能。要达到最好的性能,需要建立一颗最优二叉树,但是最优二叉树的建立和维护需要大量的操作,因此用平衡 二叉树就比较好。同时,平衡二叉树多用于内存结构对象中,因此维护他的开销相对较小。
②为什么使用B+树呢?
虽然二叉查找树和平衡二叉树都能够实现较快的数据查找,但是,由于数据库的内容是存在于磁盘上,而磁盘IO与内存IO相比,比内存IO慢了10^5~10^6倍,为了减少磁盘IO,提高检索速度,因而才用了B+树这种数据结构。换言之,B+树就是为磁盘或其他直接存取辅助设备而设计的一种多路查找树,是多叉树。
③什么是B+树,其特性是什么
B+树的概念还是过于复杂,直接上图比较合适,来一张维基百科上的截图:
从上面可以看出,所有记录的节点都在页节点中,并且是顺序存放的,如果我们从最左边的节点开始遍历,可以得到的所有键值的顺序是:1、2、3、4、5、6、7。
在B+树中,所有记录节点都是按照键值的大小顺序存放在同一层的叶节点中,各个叶子节点通过指针进行连接。由于一个节点中存放了多条的数据,那么检索的时候,进行的磁盘IO次数将会少掉很多。
在B+树插入的时候,为了保持平衡,对于新插入的键值可能需要做大量的拆分页操作,而B+树主要用于磁盘,因此页的拆分意味着磁盘操作,因此应该在可能的情况下尽量减少页的拆分。因此,B+树提供了旋转的功能。至于旋转和删除等内容,过于复杂,这篇笔记先不做记录。只是了解使用B+树的原因以及B+树的特性。
关于索引
InnoDB存储引擎使用聚集索引,实际的数据行和相关键值保存在一块。因而,在InnoDB中要使用索引访问数据始终需要两次查找,而不是一次。因为索引叶子节点中存储的不是行的物理位置,而是主键的值。即:二次索引-->主键-->数据的叶子-->通过数据叶字节点中的page directory找到数据行。
因为每一张InnoDB的表都会有一个主键索引,但是如果没有显式指定怎么办?如果没有手工去指定主键索引的话,那么,InnoDB引擎会指派一个unique的列作为主键,如果没有unique的字段的话,那么便会自动生成一个隐含的列作为主键。
所以,在在InnoDB的设计中,应该尽可能的使用一个与业务无关auto_increment的自增主键,而不要去使用uuid之类的随机(无序)的聚集键。同时,由于所有的索引都使用主键的索引,如果主键索引过长,也会使辅助索引相应的变大。
聚集索引的存储并不是物理上的连续,而是逻辑上连续的。一方面,页通过双向链表连接,页按照主键的顺序排列;另一方面,每个页中的记录也是通过双向链表进行维护,物理存储上可以同样不按照主键存储。
对于目前的MySQL来说,所有的对于索引的添加或者删除操作,MySQL数据库都是要先创建一张新的临时表,然后再把数据导入临时表,再删除原来的表,然后再把临时表命名为原来的表。所以,如果一张表中数据太多的话,那么后期添加删除索引需要花费很长的时间,因而最好在数据库设计初期便设计好索引。
还有,虽然InnoDB存储引擎从版本innoDB Plugin开始,支持一种称为快速索引创建的方法,但是这种方法只限定于辅助索引,对于主键的创建和删除还是需要重建一张表。
更好的资料:
[2]《MySQL技术内幕:InnoDB存储引擎》
MySQL:InnoDB存储引擎的B+树索引算法的更多相关文章
- InnoDB存储引擎的B+树索引算法
关于B+树数据结构 ①InnoDB存储引擎支持两种常见的索引. 一种是B+树,一种是哈希. B+树中的B代表的意思不是二叉(binary),而是平衡(balance),因为B+树最早是从平衡二叉树演化 ...
- InnoDB存储引擎的 B+ 树索引
B+ 树是为磁盘设计的 m 叉平衡查找树,在B+树中,所有的记录都是按照键值的大小,顺序存放在同一层的叶子节点上,各叶子节点组成双链表.叶节点是数据,非叶节点是索引. 首先,需要清楚:B+ 树索引并不 ...
- MySQL InnoDB存储引擎体系架构 —— 索引高级
转载地址:https://mp.weixin.qq.com/s/HNnzAgUtBoDhhJpsA0fjKQ 世界上只两件东西能震撼人们的心灵:一件是我们心中崇高的道德标准:另一件是我们头顶上灿烂的星 ...
- 浅析Mysql InnoDB存储引擎事务原理
浅析Mysql InnoDB存储引擎事务原理 大神:http://blog.csdn.net/tangkund3218/article/details/47904021
- MySQL技术内幕InnoDB存储引擎(五)——索引及其相关算法
索引概述 索引太多可能会降低运行性能,太少就会影响查询性能. 最开始就要在需要的地方添加索引. 常见的索引: B+树索引 全文索引 哈希索引 B+树索引 B+树 所有的叶子节点存放完整的数据,非叶子节 ...
- MySQL InnoDB 存储引擎探秘
在MySQL中InnoDB属于存储引擎层,并以插件的形式集成在数据库中.从MySQL5.5.8开始,InnoDB成为其默认的存储引擎.InnoDB存储引擎支持事务.其设计目标主要是面向OLTP的应用, ...
- MySQL InnoDB 存储引擎原理浅析
注:本文主要基于MySQL 5.6以后版本编写,多数知识来着书籍<MySQL技术内幕++InnoDB存储引擎>,本文章仅记录个人认为比较重要的部分,有兴趣的可以花点时间读原书. 一.MyS ...
- MySQL InnoDB存储引擎
200 ? "200px" : this.width)!important;} --> 介绍 本篇文章是对Innodb存储引擎的概念进行一个整体的概括,innodb存储引擎的 ...
- mysql innodb存储引擎介绍
innodb存储引擎1.存储:数据目录.有配置参数为“ innodb_data_home_dir ” .“ innodb_data_file_path ” 和 “innodb_log_group_ho ...
随机推荐
- python-操作MySQL数据库
1.安装MySQLdb? 为了用DB-API编写MySQL脚本,必须确保已经安装了MySQL.复制以下代码,并执行: #!/usr/bin/python # -*- coding: UTF-8 -*- ...
- ubuntu下安装迅雷
----------------------------------2016-03-28新增适用于ubuntu16.04系列的安装包---------------------------------- ...
- HDU 3974 Assign the task(dfs建树+线段树)
题目大意:公司里有一些员工及对应的上级,给出一些员工的关系,分配给某员工任务后,其和其所有下属都会进行这项任务.输入T表示分配新的任务, 输入C表示查询某员工的任务.本题的难度在于建树,一开始百思不得 ...
- AngularJS学习--- 过滤器(filter),格式化要显示的数据 step 9
1.切换目录,启动项目 git checkout step- npm start 2.需求: 格式化要显示的数据. 比如要将true-->yes,false-->no,这样相互替换. 3. ...
- 解决 webx.ml 中The superclass "javax.servlet.http.HttpServlet" was not found on the Java Build Path 问题
在Eclipse 的项目 上,点击鼠标右键 选中 ,并 Finish 即可.
- Photoshop 使用曲线
曲线表示的是图像的明度, 通过信息办的 HSB 信息可以看到调整曲线时整个图像明度的变化 曲线的左下角表示图片的暗部, 右下角表示图片的高光部 而曲线本身的纵坐标则表示这个部分的明度, 例如将曲线的左 ...
- Git克隆
用法1:Git clone <repository> <directory> 将<repository>指向的版本库创建一个克隆到<directory> ...
- 使用 IntraWeb (40) - 自定义 Session 数据
修改 UserSessionUnit 单元: unit UserSessionUnit; interface uses IWUserSessionBase, SysUtils, Classes, IW ...
- MySQL数据库指定字符集
mysql 创建数据库时指定编码很重要,很多开发者都使用了默认编码,但是我使用的经验来看,制定数据库的编码可以很大程度上避免倒入导出带来的乱码问题. 我们遵循的标准是,数据库,表,字段和页面或文本的编 ...
- 11 个 Linux 上最佳的图形化 Git 客户端
Git是软件开发和若干其他版本控制任务免费和开源的分布式版本控制系统.它被设计用来以应付一切从小到非常大的项目,基于速度,效率和数据完整性. Linux用户主要通过命令行管理Git,不过,一些图形用户 ...