人作X部;把门按时间拆点,作Y部;如果某人能在某个时间到达某门则连边。就是个二分图最大匹配。

时间可以二分枚举,或者直接从1枚举时间然后加新边在原来的基础上进行增广。

谨记:时间是个不可忽视的维度。

 #include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
using namespace std;
#define INF (1<<30)
#define MAXN 80000
#define MAXM 80000*400 struct Edge{
int v,cap,flow,next;
}edge[MAXM];
int vs,vt,NE,NV;
int head[MAXN]; void addEdge(int u,int v,int cap){
edge[NE].v=v; edge[NE].cap=cap; edge[NE].flow=;
edge[NE].next=head[u]; head[u]=NE++;
edge[NE].v=u; edge[NE].cap=; edge[NE].flow=;
edge[NE].next=head[v]; head[v]=NE++;
} int level[MAXN];
int gap[MAXN];
void bfs(){
memset(level,-,sizeof(level));
memset(gap,,sizeof(gap));
level[vt]=;
gap[level[vt]]++;
queue<int> que;
que.push(vt);
while(!que.empty()){
int u=que.front(); que.pop();
for(int i=head[u]; i!=-; i=edge[i].next){
int v=edge[i].v;
if(level[v]!=-) continue;
level[v]=level[u]+;
gap[level[v]]++;
que.push(v);
}
}
} int pre[MAXN];
int cur[MAXN];
int ISAP(){
bfs();
memset(pre,-,sizeof(pre));
memcpy(cur,head,sizeof(head));
int u=pre[vs]=vs,flow=,aug=INF;
gap[]=NV;
while(level[vs]<NV){
bool flag=false;
for(int &i=cur[u]; i!=-; i=edge[i].next){
int v=edge[i].v;
if(edge[i].cap!=edge[i].flow && level[u]==level[v]+){
flag=true;
pre[v]=u;
u=v;
//aug=(aug==-1?edge[i].cap:min(aug,edge[i].cap));
aug=min(aug,edge[i].cap-edge[i].flow);
if(v==vt){
flow+=aug;
for(u=pre[v]; v!=vs; v=u,u=pre[u]){
edge[cur[u]].flow+=aug;
edge[cur[u]^].flow-=aug;
}
//aug=-1;
aug=INF;
}
break;
}
}
if(flag) continue;
int minlevel=NV;
for(int i=head[u]; i!=-; i=edge[i].next){
int v=edge[i].v;
if(edge[i].cap!=edge[i].flow && level[v]<minlevel){
minlevel=level[v];
cur[u]=i;
}
}
if(--gap[level[u]]==) break;
level[u]=minlevel+;
gap[level[u]]++;
u=pre[u];
}
return flow;
} int n,m;
char map[][];
int d[][];
bool vis[];
int dx[]={,,,-};
int dy[]={,-,,};
void bfs(int x,int y){
int s=x*m+y;
queue<int> que;
que.push(s);
while(!que.empty()){
x=que.front()/m; y=que.front()%m;
for(int i=; i<; ++i){
int nx=x+dx[i],ny=y+dy[i];
if( nx<||nx>=n||ny<||ny>=m || map[nx][ny]!='.' || d[s][nx*m+ny] ) continue;
d[s][nx*m+ny]=d[s][que.front()]+;
vis[nx*m+ny]=;
que.push(nx*m+ny);
}
que.pop();
}
}
bool canEscape(){
for(int i=; i<n; ++i){
for(int j=; j<m; ++j){
if(map[i][j]=='.' && !vis[i*m+j]) return ;
}
}
return ;
}
int escape(int time){
for(int i=; i<n; ++i){
for(int j=; j<m; ++j){
if(map[i][j]!='D') continue;
addEdge(i*m+j+time*n*m,vt,);
for(int x=; x<n; ++x){
for(int y=; y<m; ++y){
if(map[x][y]!='.') continue;
if(d[i*m+j][x*m+y] && d[i*m+j][x*m+y]<=time+) addEdge(x*m+y,i*m+j+time*n*m,);
}
}
}
}
return ISAP();
}
int main(){
int t;
scanf("%d",&t);
while(t--){
scanf("%d%d",&n,&m);
for(int i=; i<n; ++i) scanf("%s",map[i]);
memset(d,,sizeof(d));
memset(vis,,sizeof(vis));
for(int i=; i<n; ++i){
for(int j=; j<m; ++j){
if(map[i][j]=='D') bfs(i,j);
}
}
if(!canEscape()){
puts("impossible");
continue;
} vs=; vt=vs+; NV=vt+; NE=;
memset(head,-,sizeof(head));
int tot=;
for(int i=; i<n; ++i){
for(int j=; j<m; ++j){
if(map[i][j]=='.') addEdge(vs,i*m+j,),++tot;
}
}
int time=;
while(tot){
tot-=escape(time);
++time;
}
printf("%d\n",time);
}
}

POJ3057 Evacuation(二分图最大匹配)的更多相关文章

  1. POJ3057 Evacuation 二分图匹配+最短路

    POJ3057 Evacuation 二分图匹配+最短路 题目描述 Fires can be disastrous, especially when a fire breaks out in a ro ...

  2. POJ Evacuation /// 二分图最大匹配

    题目大意: 在一个n*m的房间中 ‘X’为墙 ‘D’为门 ‘.’为人 门只存在与外围 人每秒钟只能向四连通区域走一步 门比较狭窄 每秒钟只能通过一个人 求所有人逃脱的最短时间 如果不可能则输出impo ...

  3. POJ 2226二分图最大匹配

    匈牙利算法是由匈牙利数学家Edmonds于1965年提出,因而得名.匈牙利算法是基于Hall定理中充分性证明的思想,它是二部图匹配最常见的算法,该算法的核心就是寻找增广路径,它是一种用增广路径求二分图 ...

  4. POJ2239 Selecting Courses(二分图最大匹配)

    题目链接 N节课,每节课在一个星期中的某一节,求最多能选几节课 好吧,想了半天没想出来,最后看了题解是二分图最大匹配,好弱 建图: 每节课 与 时间有一条边 #include <iostream ...

  5. poj 2239 二分图最大匹配,基础题

    1.poj 2239   Selecting Courses   二分图最大匹配问题 2.总结:看到一个题解,直接用三维数组做的,很巧妙,很暴力.. 题意:N种课,给出时间,每种课在星期几的第几节课上 ...

  6. UESTC 919 SOUND OF DESTINY --二分图最大匹配+匈牙利算法

    二分图最大匹配的匈牙利算法模板题. 由题目易知,需求二分图的最大匹配数,采取匈牙利算法,并采用邻接表来存储边,用邻接矩阵会超时,因为邻接表复杂度O(nm),而邻接矩阵最坏情况下复杂度可达O(n^3). ...

  7. 二分图最大匹配的K&#246;nig定理及其证明

     二分图最大匹配的K?nig定理及其证明 本文将是这一系列里最短的一篇,因为我只打算把K?nig定理证了,其它的废话一概没有.    以下五个问题我可能会在以后的文章里说,如果你现在很想知道的话,网上 ...

  8. ZOJ1654 Place the Robots(二分图最大匹配)

    最大匹配也叫最大边独立集,就是无向图中能取出两两不相邻的边的最大集合. 二分图最大匹配可以用最大流来解. 如果题目没有墙,那就是一道经典的二分图最大匹配问题: 把地图上的行和列分别作为点的X部和Y部, ...

  9. HDU:过山车(二分图最大匹配)

    http://acm.hdu.edu.cn/showproblem.php?pid=2063 题意:有m个男,n个女,和 k 条边,求有多少对男女可以搭配. 思路:裸的二分图最大匹配,匈牙利算法. 枚 ...

随机推荐

  1. MySQL数据库服务器的架设

    导读 MySQL数据库是Linux操作系统上用得最多的数据库系统,它可以非常方便的与其它服务器集成在一起,如Apache.Vsftpd.Postfix等.下面介绍RHEL 6平台MySQL数据库服务器 ...

  2. [Educational Codeforces Round 16]C. Magic Odd Square

    [Educational Codeforces Round 16]C. Magic Odd Square 试题描述 Find an n × n matrix with different number ...

  3. Linux Haproxy 安装和部署

    一.Haproxy 安装 下载地址 http://pan.baidu.com/s/1mggViXE cd /usr/local tar xzvf haproxy-.tar.gz cd haproxy- ...

  4. 【Python】使用 boto 调用 S3 对象存储API

    代码示例: import logging #from django.conf import settings import boto from boto.s3.key import Key impor ...

  5. Burst Balloons

    Given n balloons, indexed from 0 to n-1. Each balloon is painted with a number on it represented by ...

  6. Kmin

    Kmin of Array [本文链接] http://www.cnblogs.com/hellogiser/p/kmin-of-array.html [代码]  C++ Code  12345678 ...

  7. linux shell脚本守护进程监控svn服务

    最近搭建的svn服务不知道什么原因服务总是被关闭(如果你不知道怎么搭建svn可以参考linux下搭建svn版本控制软件),因此用shell脚本实现一个守护进程.用于监控svn服务是否启动,如果服务不在 ...

  8. Cocos2d-x 学习资料推荐

    最近在看Cocos2d-x ,官网的资料太少了,下面推荐一些比较好的教程,不断更新中. 1. cocos2d-x高级开发教程 如果你懂得objective-c 那么一定要看看这本书,这里面有许多C++ ...

  9. php中static静态关键字的使用

    php中除了常规类和方法的使用,访问控制之外,还有静态关键字static,静态变量可以是局部变量也可以是全局变量,当一个程序段执行完毕时,静态变量并没有消失,它依然存在于内存中,下次在定义时还是以前的 ...

  10. 使用 TRegistry 类[1]: 显示各主键下的项

    使用 TRegistry 类[1]: 显示各主键下的项 {XP 注册表中的主键} HKEY_CLASSES_ROOT    {文件类型信息} HKEY_CURRENT_USER    {当前用户信息} ...