Leetcode: Graph Valid Tree && Summary: Detect cycle in undirected graph
Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), write a function to check whether these edges make up a valid tree. For example: Given n = 5 and edges = [[0, 1], [0, 2], [0, 3], [1, 4]], return true. Given n = 5 and edges = [[0, 1], [1, 2], [2, 3], [1, 3], [1, 4]], return false. Note: you can assume that no duplicate edges will appear in edges. Since all edges are undirected, [0, 1] is the same as [1, 0] and thus will not appear together in edges.
This problem can be solved by using union find, reference this blog:https://segmentfault.com/a/1190000003791051
复杂度
时间 O(N^M) 空间 O(N)
思路
判断输入的边是否能构成一个树,我们需要确定两件事:
这些边是否构成环路,如果有环则不能构成树
这些边是否能将所有节点连通,如果有不能连通的节点则不能构成树
因为不需要知道具体的树长什么样子,只要知道连通的关系,所以Union Find(并查集)相比深度优先搜索是更好的方法。我们定义一个并查集的数据结构,并提供标准的四个接口:
union
将两个节点放入一个集合中find
找到该节点所属的集合编号areConnected
判断两个节点是否是一个集合count
返回该并查集中有多少个独立的集合
具体并查集的原理,参见这篇文章。简单来讲,就是先构建一个数组,节点0到节点n-1,刚开始都各自独立的属于自己的集合。这时集合的编号是节点号。然后,每次union操作时,我们把整个并查集中,所有和第一个节点所属集合号相同的节点的集合号,都改成第二个节点的集合号。这样就将一个集合的节点归属到同一个集合号下了。我们遍历一遍输入,把所有边加入我们的并查集中,加的同时判断是否有环路。最后如果并查集中只有一个集合,则说明可以构建树。
注意
因为要判断是否会产生环路,union方法要返回一个boolean,如果两个节点本来就在一个集合中,就返回假,说明有环路
Union Find based on quick find: 17ms
public class Solution {
public boolean validTree(int n, int[][] edges) {
unionfind uf = new unionfind(n);
for (int i=0; i<edges.length; i++) {
if (uf.areConnected(edges[i][0], edges[i][1])) return false;
else {
uf.union(edges[i][0], edges[i][1]);
}
}
return uf.count()==1;
} public class unionfind {
int[] ids; //union id for each node
int cnt; //the number of independent union public unionfind(int size) {
this.ids = new int[size];
for (int i=0; i<size; i++) {
ids[i] = i;
}
this.cnt = size;
} public boolean union(int i, int j) {
int src = find(i);
int dst = find(j);
if (src != dst) {
for (int k=0; k<ids.length; k++) {
if (ids[k] == src) {
ids[k] = dst;
}
}
cnt--;
return true;
}
return false;
} public int find(int i) {
return ids[i];
} public boolean areConnected(int i, int j) {
return find(i)==find(j);
} public int count() {
return cnt;
}
}
}
faster: Union Find based on quick union: 3ms
public class Solution {
public boolean validTree(int n, int[][] edges) {
unionfind uf = new unionfind(n);
for (int i=0; i<edges.length; i++) {
if (uf.areConnected(edges[i][0], edges[i][1])) return false;
else {
uf.union(edges[i][0], edges[i][1]);
}
}
return uf.count()==1;
} public class unionfind {
int[] ids; //union id for each node
int cnt; //the number of independent union public unionfind(int size) {
this.ids = new int[size];
for (int i=0; i<size; i++) {
ids[i] = i;
}
this.cnt = size;
} public void union(int i, int j) {
int rooti = find(i);
int rootj = find(j);
ids[rooti] = rootj;
this.cnt--;
} public int find(int i) {
while (ids[i] != i) i = ids[i];
return i;
} public boolean areConnected(int i, int j) {
return find(i)==find(j);
} public int count() {
return cnt;
}
}
}
Summary:
Dectect cycle in directed graph:
Detect cycle in a directed graph is using a DFS. Depth First Traversal can be used to detect cycle in a Graph. DFS for a connected graph produces a tree. There is a cycle in a graph only if there is a back edge present in the graph. A back edge is an edge that is from a node to itself (selfloop) or one of its ancestor in the tree produced by DFS. In the following graph, there are 3 back edges, marked with cross sign. We can observe that these 3 back edges indicate 3 cycles present in the graph.
To detect a back edge, we can keep track of vertices currently in recursion stack of function for DFS traversal. If we reach a vertex that is already in the recursion stack, then there is a cycle in the tree. The edge that connects current vertex to the vertex in the recursion stack is back edge. We have used recStack[] array to keep track of vertices in the recursion stack.
Detect cycle in undirected graph:
method 1: Union Find The time complexity of the union-find algorithm is O(ELogV).
method 2: DFS + parent node Like directed graphs, we can use DFSto detect cycle in an undirected graph in O(V+E) time. We do a DFS traversal of the given graph. For every visited vertex ‘v’, if there is an adjacent ‘u’ such that u is already visited and u is not parent of v, then there is a cycle in graph. If we don’t find such an adjacent for any vertex, we say that there is no cycle. The assumption of this approach is that there are no parallel edges between any two vertices.
Leetcode: Graph Valid Tree && Summary: Detect cycle in undirected graph的更多相关文章
- [LeetCode] 261. Graph Valid Tree 图是否是树
Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...
- [Locked] Graph Valid Tree
Graph Valid Tree Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is ...
- [LeetCode#261] Graph Valid Tree
Problem: Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair o ...
- [LeetCode] Graph Valid Tree 图验证树
Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...
- LeetCode Graph Valid Tree
原题链接在这里:https://leetcode.com/problems/graph-valid-tree/ 题目: Given n nodes labeled from 0 to n - 1 an ...
- [LeetCode] 261. Graph Valid Tree _ Medium tag: BFS
Given n nodes labeled from 0 to n-1 and a list of undirected edges (each edge is a pair of nodes), w ...
- Graph Valid Tree -- LeetCode
Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...
- [Swift]LeetCode261.图验证树 $ Graph Valid Tree
Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...
- Graph Valid Tree
Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...
随机推荐
- 浮动以后父DIV包不住子DIV解决方案
转载自http://blog.sina.com.cn/s/blog_6c363acf0100v4cz.html 当DIV1里面嵌套有一个DIV2,当DIV2设置了浮动,那么DIV1是无法被撑开的,也就 ...
- 把Java程序打包成jar文件包并执行
1.首先要确认自己写的程序有没有报错. 2.第一次我写的是Web Project到现在,我一直没有执行成功,所以最好创建的是java Project 打包步骤: 1.在项目上,右键,选择Export. ...
- 【转】get a mysterious problem,when i use HttpWebRequest in unity c# script
in script,i use HttpWebRequest to get service from network.but it comes a mysterious problem. the so ...
- SQuirreL 连接 hive
软件安装版本: hadoop-2.5.1 hbase-0.98.12.1-hadoop2 apache-hive-1.2.1-bin SQuirreL SQL Client3.7 集成步骤: 1. S ...
- 【转】 class 和 struct 区别
转载来源:http://blog.sina.com.cn/s/blog_48f587a80100k630.html C++中的struct对C中的struct进行了扩充,它已经不再只是一个包含不同数据 ...
- HDFS的联盟Federation
一:概述 1.单个namenode的局限性 namespace的限制 单个namenode所能存储的对象受到JVM中的heap size的限制 namenode的扩张性 不可以水平扩张 隔离性 单个n ...
- Win7+VS2005编译Qt4.7.3+phonon(需要安装新版本Windows SDK)
Qt官网上下载的源代码在编译时并没有将phonon继承进去,只提供了源代码,而在Win7+VS2005中编译phonon时遇到不少的问题,因为phonon只是一个前端程序,要使用其实现多媒体的播放还需 ...
- 《Haskell趣学指南 Learn You a Haskell for Great Good!》-代码实验
doubleMe x = x + x doubleUs x y = doubleMe x + doubleMe y doubleSmallNumber x = then x else x * doub ...
- android通过pc脚本执行sqlite3脚本
最近在调研市面上的一些android db框架,需要经常重复的输入一堆比如 adb shell cd /data/data/com.example.testandroiddb/databases sq ...
- iOS开发教程之:iPhone开发环境搭建
安装条件: 硬件:一台拥有支持虚拟技术的64位双核处理器和2GB以上内存的PC. 注意:运行MAC OS,需要电脑支持虚拟技术(VT),安装时,需要将VT启动,在BIOS中开启. 软件: Window ...