题意:给一个递推式S(n) = a1*S(n-1)+...+aR*S(n-R),要求S(k)+S(2k)+...+S(nk)的值。

分析:看到n的大小和递推式,容易想到矩阵快速幂。但是如何转化呢?

首先看到

我们用A表示上面的递推式中的R*R的那个矩阵,那么对于前面那个向量,每次乘上A^k之后都会变成(S(n + k)...)
那么对于初始的向量( S(R) S(R - 1) ... S(1) ) 如果这个向量当中包括 S(k) 我们可以直接对于每次要算的 S( i * k) 求和
也就是说这个向量乘上( I + A^k + (A^k)^2 + (A^k)^3 + ... + (A^k)^(N - 1))之后对应的 S(k) 所在的那个位置就变成了要求的和
而对于那个矩阵型的等比数列求和可以直接用二分求和(常用的技巧),这样就可以在限制的时间内完成计算了  (Gatevin)

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#define Mod 1000000007
#define ll long long
using namespace std;
#define N 100007 ll s[],a[];
ll n;
int r; struct Matrix
{
ll m[][];
Matrix()
{
memset(m,,sizeof(m));
for(int i=;i<=;i++)
m[i][i] = ;
}
}; Matrix Mul(Matrix a,Matrix b)
{
Matrix res;
int i,j,k;
for(i=;i<=r;i++)
{
for(j=;j<=r;j++)
{
res.m[i][j] = ;
for(k=;k<=r;k++)
res.m[i][j] = (res.m[i][j]+(a.m[i][k]*b.m[k][j]%Mod))%Mod;
}
}
return res;
} Matrix add(Matrix a,Matrix b)
{
Matrix res;
memset(res.m,,sizeof(res.m));
int i,j;
for(i=;i<=r;i++)
for(j=;j<=r;j++)
res.m[i][j] = (a.m[i][j]+b.m[i][j])%Mod;
return res;
} Matrix fastm(Matrix a,ll b)
{
Matrix res;
while(b)
{
if(b&1LL)
res = Mul(res,a);
a = Mul(a,a);
b >>= ;
}
return res;
} Matrix getsum(Matrix a,ll b) //二分求矩阵等比数列和
{
Matrix I; //单位阵
if(b == 1LL)
return I;
if(b&1LL)
return add(getsum(a,b-1LL),fastm(a,b-1LL));
else
return Mul(getsum(a,b/2LL),add(I,fastm(a,b/2LL))); // (I+A^k+...+A^(n/2)k)*(I+A^(n/2)k)
} int main()
{
int t,i,j,k;
scanf("%d",&t);
while(t--)
{
scanf("%lld%d%d",&n,&r,&k);
for(i=;i<=r;i++)
scanf("%lld",&s[i]);
for(i=;i<=r;i++)
scanf("%lld",&a[i]);
Matrix A;
memset(A.m,,sizeof(A.m));
for(i=;i<=r;i++) //构造矩阵
{
A.m[][i] = a[i];
if(i < r)
A.m[i+][i] = ;
}
//求 I+A^k+A^(2k)+...+A^(n-1)k
Matrix base = fastm(A,k);
Matrix ans = getsum(base,n);
ll res = ;
if(k <= r) //第k项在给出的数内
{
for(i=;i<=r;i++)
res = (res + (s[i]*ans.m[r-k+][r-i+]%Mod))%Mod;
printf("%lld\n",res%Mod);
}
else //否则先算出s[r+1]...s[k]
{
for(i=r+;i<=k;i++)
{
s[i] = ;
for(j=;j<=r;j++)
s[i] = (s[i]+s[i-j]*a[j]%Mod)%Mod;
}
for(i=;i<=r;i++)
res = (res + (s[k-i+]*ans.m[][i])%Mod)%Mod;
printf("%lld\n",res%Mod);
}
}
return ;
}

SPOJ AMR10E Stocks Prediction --二分求和+矩阵快速幂的更多相关文章

  1. 【学术篇】SPOJ GEN Text Generator AC自动机+矩阵快速幂

    还有5天省选才开始点字符串这棵技能树是不是太晚了点... ~题目の传送门~ AC自动机不想讲了QAQ.其实很久以前是学过然后打过板子的, 但也仅限于打过板子了~ 之前莫名其妙学了一个指针版的但是好像不 ...

  2. poj3233 题解 矩阵乘法 矩阵快速幂

    题意:求S = A + A2 + A3 + … + Ak.(mod m) 这道题很明显可以用矩阵乘法,但是这道题的矩阵是分块矩阵, 分块矩阵概念如下:当一个矩阵A中的单位元素aij不是一个数值而是一个 ...

  3. POJ 3233 Matrix Power Series 矩阵快速幂+二分求和

    矩阵快速幂,请参照模板 http://www.cnblogs.com/pach/p/5978475.html 直接sum=A+A2+A3...+Ak这样累加肯定会超时,但是 sum=A+A2+...+ ...

  4. 2017 ECJTU ACM程序设计竞赛 矩阵快速幂+二分

    矩阵 Time Limit : 3000/1000ms (Java/Other)   Memory Limit : 65535/32768K (Java/Other) Total Submission ...

  5. POJ 3233 Matrix Power Series (矩阵快速幂+二分求解)

    题意:求S=(A+A^2+A^3+...+A^k)%m的和 方法一:二分求解S=A+A^2+...+A^k若k为奇数:S=(A+A^2+...+A^(k/2))+A^(k/2)*(A+A^2+...+ ...

  6. BZOJ.4180.字符串计数(后缀自动机 二分 矩阵快速幂/倍增Floyd)

    题目链接 先考虑 假设S确定,使构造S操作次数最小的方案应是:对T建SAM,S在SAM上匹配,如果有S的转移就转移,否则操作数++,回到根节点继续匹配S.即每次操作一定是一次极大匹配. 简单证明:假设 ...

  7. POJ3233:Matrix Power Series(矩阵快速幂+二分)

    http://poj.org/problem?id=3233 题目大意:给定矩阵A,求A + A^2 + A^3 + … + A^k的结果(两个矩阵相加就是对应位置分别相加).输出的数据mod m.k ...

  8. POJ 3233 Matrix Power Series 【经典矩阵快速幂+二分】

    任意门:http://poj.org/problem?id=3233 Matrix Power Series Time Limit: 3000MS   Memory Limit: 131072K To ...

  9. HDU 4549 (费马小定理+矩阵快速幂+二分快速幂)

    M斐波那契数列 Time Limit: 1000MS   Memory Limit: 32768KB   64bit IO Format: %I64d & %I64u Submit Statu ...

随机推荐

  1. Spark集群 + Akka + Kafka + Scala 开发(4) : 开发一个Kafka + Spark的应用

    前言 在Spark集群 + Akka + Kafka + Scala 开发(1) : 配置开发环境中,我们已经部署好了一个Spark的开发环境. 在Spark集群 + Akka + Kafka + S ...

  2. jdk1.8 ThreadPoolExecutor实现机制分析

    ThreadPoolExecutor几个重要的状态码字段 private static final int COUNT_BITS = Integer.SIZE - 3; private static ...

  3. 从网络中获取图片显示到Image控件并保存到磁盘

    一.从网络中获取图片信息: /// <summary> /// 获取图片 /// </summary> /// <param name="url"&g ...

  4. C: const and static keywords

    原文:http://www.noxeos.com/2011/07/29/c-const-static-keywords/ C: const and static keywords Ok, once a ...

  5. PHP写日志函数

    初学,写一个函数用于存储日志调试. function WriteLog($msg) { $filename = dirname(__FILE__) ."\\Debug.log"; ...

  6. React对话框组件实现

    当下前端届最火的技术之一莫过于React + Redux + webpack的技术结合.最近公司内部也正在转react,这周主要做了个React的modal组件,接下来谈下具体实现过程. 基本的HTM ...

  7. iOS多线程-03-NSOperation与NSOperationQueue

    简介 通过NSOperation与NSOperationQueue的组合也能实现多线程 通常将任务封装成NSOperation对象,并将对象添加到NSOperationQueue中实现 NSOpera ...

  8. iOS开发网络篇—NSURLConnection基本使用(二)

    1.常用的类       NSURL:请求地址 NSURLRequest:一个NSURLRequest对象就代表一个请求,它包含的信息有:      一个NSURL对象      请求方法.请求头.请 ...

  9. 去除UITableView中多余的分割线或者隐藏cell间的分割线

    一:去除tableView多余的分割线 首先,自定义一个方法 -(void)setExtraCellLineHidden: (UITableView *)tableView{    UIView *v ...

  10. 深入理解java虚拟机(4)---类加载机制

    类加载的过程包括: 加载class到内存,数据校验,转换和解析,初始化,使用using和卸载unloading过程. 除了解析阶段,其他过程的顺序是固定的.解析可以放在初始化之后,目的就是为了支持动态 ...