运行环境

Python: 3.7.1
库: sklearn (Python的机器学习工具箱)

目的:

根据鸢尾花的四个特征,对三种鸢尾花进行分类

数据(共150行,这里截取前6行,完整数据以及代码的下载链接见文末):

方法:调用内部SVM库进行鸢尾花分类

特征1 特征2 特征3 特征4 鸢尾花类型
5.1 3.5 1.4 0.2 Iris-setosa
4.9 3 1.4 0.2 Iris-setosa
4.7 3.2 1.3 0.2 Iris-setosa
4.6 3.1 1.5 0.2 Iris-setosa
5 3.6 1.4 0.2 Iris-setosa
5.4 3.9 1.7 0.4 Iris-setosa

代码如下:

from sklearn.model_selection import train_test_split
from sklearn import svm data_Set = []
data_Set_x = []
data_Set_y = [] #打开数据集,字符串前加r表示raw string,防止路径字符串中存在的反斜杠带来的转义
data_file = open(r"D:\\Coding\\Py\\Machine-Learning\\SVM_OLD\\Data_SVM.csv") #拆分数据集,取前四列为x,第五列为y
for line in data_file.readlines():
lineArr = line.strip().split(',')
data_Set.append(lineArr)
data_Set_x.append(lineArr[0:4])
data_Set_y.append(lineArr[4]) #按照7:3的比例分割训练集和测试集
data_train_x, data_test_x = train_test_split(data_Set_x,
test_size=0.3,
random_state=55)
data_train_y, data_test_y = train_test_split(data_Set_y,
test_size=0.3,
random_state=55)
"""
分别利用四种核函数进行训练,这些核函数都可以设置参数,例如
decision_function_shape='ovr'时,为one v rest,即一个类别与其他类别进行划分,
decision_function_shape='ovo'时,为one v one,即将类别两两之间进行划分,用二分类的方法模拟多分类的结果。
不设置的话会使用默认参数设置
"""
#使用linear线性核函数,C越大分类效果越好,但是可能过拟合
clf1 = svm.SVC(C=1, kernel='linear',
decision_function_shape='ovr').fit(data_train_x, data_train_y)
#使用rbf径向基核函数,gamma值越小,分类界面越连续;gamma值越大,分类界面越“散”,分类效果越好,但有可能会过拟合。
clf2 = svm.SVC(C=1, kernel='rbf', gamma=1).fit(data_train_x, data_train_y)
#使用poly多项式核函数
clf3 = svm.SVC(kernel='poly').fit(data_train_x, data_train_y)
#使用sigmoid神经元激活核函数
clf4 = svm.SVC(kernel='sigmoid').fit(data_train_x, data_train_y) #打印使用不同核函数进行分类时,训练集和测试集分类的准确率
print("linear线性核函数-训练集:", clf1.score(data_train_x, data_train_y))
print("linear线性核函数-测试集:", clf1.score(data_test_x, data_test_y))
print("rbf径向基核函数-训练集:", clf2.score(data_train_x, data_train_y))
print("rbf径向基函数-测试集:", clf2.score(data_test_x, data_test_y))
print("poly多项式核函数-训练集:", clf3.score(data_train_x, data_train_y))
print("poly多项式核函数-测试集:", clf3.score(data_test_x, data_test_y))
print("sigmoid神经元激活核函数-训练集:", clf4.score(data_train_x, data_train_y))
print("sigmoid神经元激活核函数-测试集:", clf4.score(data_test_x, data_test_y)) # 使用decision_function()可以查看决策函数
print(clf1.decision_function(data_train_x))
# 使用predict()可以查看预测结果
print(clf1.predict(data_train_x))

运行结果:

  1. 分类准确率
linear线性核函数-训练集: 1.0
linear线性核函数-测试集: 0.9555555555555556
rbf径向基核函数-训练集: 0.9904761904761905
rbf径向基函数-测试集: 0.9555555555555556
poly多项式核函数-训练集: 1.0
poly多项式核函数-测试集: 0.9333333333333333
sigmoid神经元激活核函数-训练集: 0.34285714285714286
sigmoid神经元激活核函数-测试集: 0.3111111111111111
  1. 决策函数(仅截取部分,每一列的值代表到各类别的举例)
[[-0.18006398  1.06550708  2.1145569 ]
[-0.2266221 1.07558987 2.15103223]
[-0.16806693 1.08720057 2.08086637]
[ 2.07795355 1.29285195 -0.3708055 ]
[-0.18840558 1.05553666 2.13286892]
[-0.20384 1.10258546 2.10125453]
  1. 分类结果(仅截取部分)
['Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-setosa'
'Iris-virginica' 'Iris-virginica' 'Iris-setosa' 'Iris-versicolor'
'Iris-virginica' 'Iris-versicolor' 'Iris-setosa' 'Iris-setosa'

代码以及数据集下载:

链接:https://pan.baidu.com/s/1iZo472Ynvav0mQK3VvpJFQ

提取码:ovri

参考文章:

Python | 使用SVM支持向量机进行鸢尾花分类的更多相关文章

  1. Python实现SVM(支持向量机)

    Python实现SVM(支持向量机) 运行环境 Pyhton3 numpy(科学计算包) matplotlib(画图所需,不画图可不必) 计算过程 st=>start: 开始 e=>end ...

  2. python机器学习——SVM支持向量机

    背景与原理: 支持向量机是一种用来解决分类问题的算法,其原理大致可理解为:对于所有$n$维的数据点,我们希望能够找到一个$n$维的直线(平面,超平面),使得在这个超平面一侧的点属于同一类,另一侧的点属 ...

  3. 机器学习之路: python k近邻分类器 KNeighborsClassifier 鸢尾花分类预测

    使用python语言 学习k近邻分类器的api 欢迎来到我的git查看源代码: https://github.com/linyi0604/MachineLearning from sklearn.da ...

  4. python构建bp神经网络_鸢尾花分类(一个隐藏层)__2.代码实现

    IDE:jupyter   数据集请查看:鸢尾花数据集 测试效果预览   成功率96.7% 代码已上传到码云

  5. python构建bp神经网络_鸢尾花分类(一个隐藏层)__1.数据集

    IDE:jupyter 目前我知道的数据集来源有两个,一个是csv数据集文件另一个是从sklearn.datasets导入 1.1 csv格式的数据集(下载地址已上传到博客园----数据集.rar) ...

  6. pytorch解决鸢尾花分类

    半年前用numpy写了个鸢尾花分类200行..每一步计算都是手写的  python构建bp神经网络_鸢尾花分类 现在用pytorch简单写一遍,pytorch语法解释请看上一篇pytorch搭建简单网 ...

  7. [Python]基于K-Nearest Neighbors[K-NN]算法的鸢尾花分类问题解决方案

    看了原理,总觉得需要用具体问题实现一下机器学习算法的模型,才算学习深刻.而写此博文的目的是,网上关于K-NN解决此问题的博文很多,但大都是调用Python高级库实现,尤其不利于初级学习者本人对模型的理 ...

  8. python机器学习之支持向量机SVM

    支持向量机SVM(Support Vector Machine) 关注公众号"轻松学编程"了解更多. [关键词]支持向量,最大几何间隔,拉格朗日乘子法 一.支持向量机的原理 Sup ...

  9. SVM 支持向量机算法-实战篇

    公号:码农充电站pro 主页:https://codeshellme.github.io 上一篇介绍了 SVM 的原理和一些基本概念,本篇来介绍如何用 SVM 处理实际问题. 1,SVM 的实现 SV ...

  10. 动手造轮子自己实现人工智能神经网络(ANN),解决鸢尾花分类问题Golang1.18实现

    人工智能神经网络( Artificial Neural Network,又称为ANN)是一种由人工神经元组成的网络结构,神经网络结构是所有机器学习的基本结构,换句话说,无论是深度学习还是强化学习都是基 ...

随机推荐

  1. 【UniApp】-uni-app-扩展组件

    前言 好,经过上个章节的介绍完毕之后,了解了一下 uni-app-内置组件 那么了解完了uni-app-内置组件之后,这篇文章来给大家介绍一下 UniApp 中的扩展组件 首先不管三七二十一,先来新建 ...

  2. DFT与ATE IP TEST

    IP的DFT设计测试与ATE IP TEST是一个设计,测试活动吗? 不是. 这两个设计对于前端工农村很容易搞混,认为是同一个人负责,同一个活动.实际情不是. DFT主要空DSC控制器对IP进行扫描, ...

  3. [ARC158D] Equation

    Problem Statement You are given a positive integer $n$, and a prime number $p$ at least $5$. Find a ...

  4. [ABC262E] Red and Blue Graph

    Problem Statement You are given a simple undirected graph with $N$ vertices and $M$ edges. The verti ...

  5. 将Abp默认事件总线改造为分布式事件总线

    @ 目录 原理 创建分布式事件总线 实现自动订阅和事件转发 使用 启动Redis服务 配置 传递Abp默认事件 传递自定义事件 项目地址 原理 本地事件总线是通过Ioc容器来实现的. IEventBu ...

  6. 你是否想知道如何应对高并发?Go语言为你提供了答案!

    并发编程是当前软件领域中不可忽视的一个关键概念.随着CPU等硬件的不断发展,我们都渴望让我们的程序运行速度更快.更快.而Go语言在语言层面天生支持并发,充分利用现代CPU的多核优势,这也是Go语言能够 ...

  7. 从零玩转Nginx-从零玩转nginx

    title: 从零玩转Nginx date: 2023-05-13 23:08:49.074 updated: 2023-05-13 23:17:26.474 url: https://www.yby ...

  8. SQL优化三步曲

    有一天开发同学反馈线上业务库中有一条SQL执行很满,每次几乎要跑1分钟才结束,希望我们帮忙优化一下,具体SQL如下: SQL优化第一步 - 查看执行计划 对于一个SQL的优化,我们的第一步也是最重要的 ...

  9. Python脚本猜解网站登录密码(带token验证)

    目录: 关键代码解释 设置请求头 get_token函数获取token值 完整代码: 运行结果: 上一篇文章:一个简单的Python暴力破解网站登录密码脚本 测试靶机为Pikachu漏洞练习平台暴力破 ...

  10. vscode 启动go

    { "version": "0.2.0", "configurations": [ { "name": "La ...