最近在工作上碰见了一些高并发的场景需要加锁来保证业务逻辑的正确性,并且要求加锁后性能不能受到太大的影响。初步的想法是通过数据的时间戳,id等关键字来加锁,从而保证不同类型数据处理的并发性。而java自身api提供的锁粒度太大,很难同时满足这些需求,于是自己动手写了几个简单的扩展…

1. 分段锁

借鉴concurrentHashMap的分段思想,先生成一定数量的锁,具体使用的时候再根据key来返回对应的lock。这是几个实现里最简单,性能最高,也是最终被采用的锁策略,代码如下:

/**
* 分段锁,系统提供一定数量的原始锁,根据传入对象的哈希值获取对应的锁并加锁
* 注意:要锁的对象的哈希值如果发生改变,有可能导致锁无法成功释放!!!
*/
public class SegmentLock<T> {
private Integer segments = 16;//默认分段数量
private final HashMap<Integer, ReentrantLock> lockMap = new HashMap<>(); public SegmentLock() {
init(null, false);
} public SegmentLock(Integer counts, boolean fair) {
init(counts, fair);
} private void init(Integer counts, boolean fair) {
if (counts != null) {
segments = counts;
}
for (int i = 0; i < segments; i++) {
lockMap.put(i, new ReentrantLock(fair));
}
} public void lock(T key) {
ReentrantLock lock = lockMap.get(key.hashCode() % segments);
lock.lock();
} public void unlock(T key) {
ReentrantLock lock = lockMap.get(key.hashCode() % segments);
lock.unlock();
}
}

2. 哈希锁

上述分段锁的基础上发展起来的第二种锁策略,目的是实现真正意义上的细粒度锁。每个哈希值不同的对象都能获得自己独立的锁。在测试中,在被锁住的代码执行速度飞快的情况下,效率比分段锁慢 30% 左右。如果有长耗时操作,感觉表现应该会更好。代码如下:

public class HashLock<T> {
private boolean isFair = false;
private final SegmentLock<T> segmentLock = new SegmentLock<>();//分段锁
private final ConcurrentHashMap<T, LockInfo> lockMap = new ConcurrentHashMap<>(); public HashLock() {
} public HashLock(boolean fair) {
isFair = fair;
} public void lock(T key) {
LockInfo lockInfo;
segmentLock.lock(key);
try {
lockInfo = lockMap.get(key);
if (lockInfo == null) {
lockInfo = new LockInfo(isFair);
lockMap.put(key, lockInfo);
} else {
lockInfo.count.incrementAndGet();
}
} finally {
segmentLock.unlock(key);
}
lockInfo.lock.lock();
} public void unlock(T key) {
LockInfo lockInfo = lockMap.get(key);
if (lockInfo.count.get() == 1) {
segmentLock.lock(key);
try {
if (lockInfo.count.get() == 1) {
lockMap.remove(key);
}
} finally {
segmentLock.unlock(key);
}
}
lockInfo.count.decrementAndGet();
lockInfo.unlock();
} private static class LockInfo {
public ReentrantLock lock;
public AtomicInteger count = new AtomicInteger(1); private LockInfo(boolean fair) {
this.lock = new ReentrantLock(fair);
} public void lock() {
this.lock.lock();
} public void unlock() {
this.lock.unlock();
}
}
}

3. 弱引用锁

哈希锁因为引入的分段锁来保证锁创建和销毁的同步,总感觉有点瑕疵,所以写了第三个锁来寻求更好的性能和更细粒度的锁。这个锁的思想是借助java的弱引用来创建锁,把锁的销毁交给jvm的垃圾回收,来避免额外的消耗。

有点遗憾的是因为使用了ConcurrentHashMap作为锁的容器,所以没能真正意义上的摆脱分段锁。这个锁的性能比 HashLock 快10% 左右。锁代码:

/**
* 弱引用锁,为每个独立的哈希值提供独立的锁功能
*/
public class WeakHashLock<T> {
private ConcurrentHashMap<T, WeakLockRef<T, ReentrantLock>> lockMap = new ConcurrentHashMap<>();
private ReferenceQueue<ReentrantLock> queue = new ReferenceQueue<>(); public ReentrantLock get(T key) {
if (lockMap.size() > 1000) {
clearEmptyRef();
}
WeakReference<ReentrantLock> lockRef = lockMap.get(key);
ReentrantLock lock = (lockRef == null ? null : lockRef.get());
while (lock == null) {
lockMap.putIfAbsent(key, new WeakLockRef<>(new ReentrantLock(), queue, key));
lockRef = lockMap.get(key);
lock = (lockRef == null ? null : lockRef.get());
if (lock != null) {
return lock;
}
clearEmptyRef();
}
return lock;
} @SuppressWarnings("unchecked")
private void clearEmptyRef() {
Reference<? extends ReentrantLock> ref;
while ((ref = queue.poll()) != null) {
WeakLockRef<T, ? extends ReentrantLock> weakLockRef = (WeakLockRef<T, ? extends ReentrantLock>) ref;
lockMap.remove(weakLockRef.key);
}
} private static final class WeakLockRef<T, K> extends WeakReference<K> {
final T key; private WeakLockRef(K referent, ReferenceQueue<? super K> q, T key) {
super(referent, q);
this.key = key;
}
}
}

后记

最开始想借助 locksupport 和 AQS 来实现细粒度锁,写着写着发现正在实现的东西和java 原生的锁区别不大,于是放弃改为对java自带锁的封装,浪费了不少时间。

实际上在实现了这些细粒度锁之后,又有了新的想法,比如可以通过分段思想将数据提交给专门的线程来处理,可以减少大量线程的阻塞时间,留待日后探索…

 

Java细粒度锁实现的3种方式的更多相关文章

  1. Java中HashMap遍历的两种方式

    Java中HashMap遍历的两种方式 转]Java中HashMap遍历的两种方式原文地址: http://www.javaweb.cc/language/java/032291.shtml 第一种: ...

  2. JAVA中集合输出的四种方式

    在JAVA中Collection输出有四种方式,分别如下: 一) Iterator输出. 该方式适用于Collection的所有子类. public class Hello { public stat ...

  3. java读取XML文件的四种方式

    java读取XML文件的四种方式 Xml代码 <?xml version="1.0" encoding="GB2312"?> <RESULT& ...

  4. java中数组复制的两种方式

    在java中数组复制有两种方式: 一:System.arraycopy(原数组,开始copy的下标,存放copy内容的数组,开始存放的下标,需要copy的长度); 这个方法需要先创建一个空的存放cop ...

  5. java动态获取WebService的两种方式(复杂参数类型)

    java动态获取WebService的两种方式(复杂参数类型) 第一种: @Override public OrderSearchListRes searchOrderList(Order_Fligh ...

  6. java 实现md5加密的三种方式与解密

      java 实现md5加密的三种方式 CreateTime--2018年5月31日15点04分 Author:Marydon 一.解密 说明:截止文章发布,Java没有实现解密,但是已有网站可以免费 ...

  7. Java 读取 .properties 文件的几种方式

    Java 读取 .properties 配置文件的几种方式   Java 开发中,需要将一些易变的配置参数放置再 XML 配置文件或者 properties 配置文件中.然而 XML 配置文件需要通过 ...

  8. Java执行groovy脚本的两种方式

    记录Java执行groovy脚本的两种方式,简单粗暴: 一种是通过脚本引擎ScriptEngine提供的eval(String)方法执行脚本内容:一种是执行groovy脚本: 二者都通过Invocab ...

  9. JAVA - 启动线程有哪几种方式

    JAVA - 启动线程有哪几种方式 一.继承Thread类创建线程类 (1)定义Thread类的子类,并重写该类的run方法,该run方法的方法体就代表了线程要完成的任务.因此把run()方法称为执行 ...

随机推荐

  1. MongoDB入门安装

    一.基础信息 系统环境:Linux MongoDB最新版下载:https://codeload.github.com/mongodb/mongo/zip/r3.2.0 二.安装过程 1.将MongoD ...

  2. 一致性哈希算法与Java实现

    原文:http://blog.csdn.net/wuhuan_wp/article/details/7010071 一致性哈希算法是分布式系统中常用的算法.比如,一个分布式的存储系统,要将数据存储到具 ...

  3. linux下shell脚本执行jar文件

    最近在搞一个shell脚本启动jar文件个关闭jar文件的东东.搞得我都蛋疼了.今天晚上终于弄好了 话说,小弟的linux只是刚入门,经过各方查资料终于搞定了.话不多说,下面开始上小弟写的shell脚 ...

  4. ASP.NET Core AD 域登录

    在选择AD登录时,其实可以直接选择 Windows 授权,不过因为有些网站需要的是LDAP获取信息进行授权,而非直接依赖Web Server自带的Windows 授权功能. 当然如果使用的是Azure ...

  5. plain framework 1(简约框架)一款主要用于网络(游戏)开发的C/C++框架 即将开源发布

    在我们的日常开发中,我们往往会遇到这种情况,当我们换了一个开发环境时很可能会重新利用一套新的框架进行开发.由于不同框架有着不同的接口,所以我们不得不花时间再次熟悉这些接口,这将造成开发时间上的重复,而 ...

  6. 【2016-10-27】【坚持学习】【Day14】【GlobalAssemblyInfo 】

    当一个解决方案,有多个项目时候,每一个项目的AssemblyInfo 都要写相同的东西.麻烦,因此使用GlobalAssemblyInfo 来统一管理. 实现如下: 在解决方案下增加一个文件夹以及Gl ...

  7. MATLAB数字图像处理基础

    图像的输入.输出和显示 1.图像的输入    imread('filename'),  实际中写的是 >> f = imread('sky.jpg'); 2.图像的显示    imshow ...

  8. 第5章 Java数组

    1.什么是数组 数组可以想象成一个巨大的盒子,这个盒子里面存放的是同一个数据类型的数据 例如:int[] scores = {78,68,94,93}; 2.如何使用Java中的数组 2.1申明数组 ...

  9. linux系统下的权限知识梳理

    下面对linux系统下的有关权限操作命令进行了梳理总结,并配合简单实例进行说明.linux中除了常见的读(r).写(w).执行(x)权限以外,还有其他的一些特殊或隐藏权限,熟练掌握这些权限知识的使用, ...

  10. reveal

    链接 界面调试工具Reveal Reveal使用教程 iOS分析UI利器——Reveal及简单破解方法 Reveal使用步骤和 破解Revealapp的试用时间限制 end