【scikit-learn基础】--『回归模型评估』之偏差分析
模型评估在统计学和机器学习中具有至关重要,它帮助我们主要目标是量化模型预测新数据的能力。
本篇主要介绍模型评估时,如何利用scikit-learn
帮助我们快速进行各种偏差的分析。
1. **R² ** 分数
R² 分数(也叫决定系数),用于衡量模型预测的拟合优度,它表示模型中因变量的变异中,可由自变量解释的部分所占的比例。
R² 值接近1的话,表示模型能够很好地解释因变量的变异,接近0的话,则表示模型解释能力较差。
需要注意的是,虽然R² 分数是一个很有用的指标,但它也有一些局限性。
例如,当模型中自变量数量增加时,R² 分数可能会增加,即使这些自变量对因变量没有真正的解释力。
因此,在使用R² 分数评估模型时,还需要结合其他诊断指标和领域知识进行综合判断。
1.1. 计算公式
\(R^2(y, \hat{y}) = 1 - \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{\sum_{i=1}^{n} (y_i - \bar{y})^2}\) 且 \(\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i\)
其中,\(n\)是样本数量,\(y_i\)是真实值,\(\hat{y_i}\)是预测值。
1.2. 使用示例
from sklearn.metrics import r2_score
y_true = [1, 2, 3, 4]
y_pred = [0, 1, 3, 5]
r2_score(y_true, y_pred)
# 结果: 0.4
y_pred = [0, 2, 3, 4]
r2_score(y_true, y_pred)
# 结果: 0.8
r2_score
就是scikit-learn
中用来计算 **R² 分数 **的函数。
2. 解释方差分数
解释方差分数(Explained Variance Score
,简称EVS
),它用于量化模型对目标变量的解释程度。
解释方差分数比较高则表示模型能够较好地解释数据中的方差,即模型的预测与实际观测值较为接近。
需要注意的是,解释方差分数仅关注模型对方差的解释程度,并不直接反映预测的准确度。
2.1. 计算公式
\(explained\_{}variance(y, \hat{y}) = 1 - \frac{Var\{ y - \hat{y}\}}{Var\{y\}}\)
其中,\(y\)是真实值,\(\hat{y}\)是预测值。
\(Var\)表示计算方差,比如:\(Var{\{y\}} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2\)
2.2. 使用示例
from sklearn.metrics import explained_variance_score
y_true = [1, 2, 3, 4]
y_pred = [0, 1, 3, 5]
explained_variance_score(y_true, y_pred)
# 结果: 0.45
y_pred = [0, 2, 3, 4]
explained_variance_score(y_true, y_pred)
# 结果: 0.85
explained_variance_score
就是scikit-learn
中用来计算 **解释方差分数 **的函数。
3. Tweedie 偏差
Tweedie 偏差是一种用于评估广义线性模型的指标,它衡量了预测值与实际观测值之间的差异,并考虑了模型的方差结构和分布假设。
Tweedie 偏差根据Tweedie分布的定义而来,参数不同,表示不同的分布。
Tweedie 偏差较小,表示模型的预测与实际观测值之间的差异较小,即模型能够更好地拟合数据。
需要注意的是,在使用 Tweedie 偏差时,需要确保所选的 Tweedie 分布适合数据的特性,否则可能会导致不准确的评估结果。
3.1. 计算公式
\(\text{D}(y, \hat{y}) = \frac{1}{n}
\sum_{i=0}^{n - 1}
2\left(\frac{\max(y_i,0)^{2-p}}{(1-p)(2-p)}-
\frac{y_i\,\hat{y}_i^{1-p}}{1-p}+\frac{\hat{y}_i^{2-p}}{2-p}\right)\)
其中,\(n\)是样本数量,\(y_i\)是真实值,\(\hat{y_i}\)是预测值。
上面的公式中,\(p=0\)时,Tweedie 偏差相当于均方误差:
\(\text{D}(y, \hat{y}) = \frac{1}{n}
\sum_{i=0}^{n - 1} (y_i-\hat{y}_i)^2\)
当 \(p=1\)时,Tweedie 偏差相当于平均泊松偏差:
\(\text{D}(y, \hat{y}) = \frac{1}{n}
\sum_{i=0}^{n - 1} 2(y_i \log(y_i/\hat{y}_i) + \hat{y}_i - y_i)\)
当 \(p=2\)时,Tweedie 偏差相当于平均Gamma偏差:
\(\text{D}(y, \hat{y}) = \frac{1}{n}
\sum_{i=0}^{n - 1} 2(\log(\hat{y}_i/y_i) + y_i/\hat{y}_i - 1)\)
3.2. 使用示例
from sklearn.metrics import mean_tweedie_deviance
mean_tweedie_deviance([1], [2], power=0)
# 运行结果: 1.0
mean_tweedie_deviance([100], [200], power=0)
# 运行结果: 10000.0
mean_tweedie_deviance([1], [2], power=1)
# 运行结果: 0.6137056388801092
mean_tweedie_deviance([100], [200], power=1)
# 运行结果: 61.370563888010906
mean_tweedie_deviance([1], [2], power=2)
# 运行结果: 0.3862943611198908
mean_tweedie_deviance([100], [200], power=2)
# 运行结果: 0.3862943611198908
power
参数不同,同样是预测值和实际值差两倍的情况下,不同分布,Tweedie 偏差的结果差别很大。
4. 总结
总之,scikit-learn
中提供的回归模型偏差的计算方式,能够帮助我们了解模型的性能、选择适合的模型、优化模型以及辅助决策。
对于回归问题的建模和预测具有重要的实际意义。
【scikit-learn基础】--『回归模型评估』之偏差分析的更多相关文章
- (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探
目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...
- 机器学习之路:python 集成回归模型 随机森林回归RandomForestRegressor 极端随机森林回归ExtraTreesRegressor GradientBoostingRegressor回归 预测波士顿房价
python3 学习机器学习api 使用了三种集成回归模型 git: https://github.com/linyi0604/MachineLearning 代码: from sklearn.dat ...
- Poisson回归模型
Poisson回归模型也是用来分析列联表和分类数据的一种方法,它实际上也是对数线性模型的一种,不同点是对数线性模型假定频数分布为多项式分布,而泊松回归模型假定频数分布为泊松分布. 首先我们来认识一下泊 ...
- (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探
一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...
- 逻辑回归模型(Logistic Regression, LR)基础
逻辑回归模型(Logistic Regression, LR)基础 逻辑回归(Logistic Regression, LR)模型其实仅在线性回归的基础上,套用了一个逻辑函数,但也就由于这个逻辑函 ...
- 『高性能模型』轻量级网络ShuffleNet_v1及v2
项目实现:GitHub 参考博客:CNN模型之ShuffleNet v1论文:ShuffleNet: An Extremely Efficient Convolutional Neural Netwo ...
- 回归模型效果评估系列1-QQ图
(erbqi)导语 QQ图全称 Quantile-Quantile图,也就是分位数-分位数图,简单理解就是把两个分布相同分位数的值,构成点(x,y)绘图:如果两个分布很接近,那个点(x,y)会分布在y ...
- 『高性能模型』HetConv: HeterogeneousKernel-BasedConvolutionsforDeepCNNs
论文地址:HetConv 一.现有网络加速技术 1.卷积加速技术 作者对已有的新型卷积划分如下:标准卷积.Depthwise 卷积.Pointwise 卷积.群卷积(相关介绍见『高性能模型』深度可分离 ...
- 『高性能模型』轻量级网络MobileNet_v2
论文地址:MobileNetV2: Inverted Residuals and Linear Bottlenecks 前文链接:『高性能模型』深度可分离卷积和MobileNet_v1 一.Mobil ...
- 20165308『网络对抗技术』Exp5 MSF基础应用
20165308『网络对抗技术』Exp5 MSF基础应用 一.原理与实践说明 实践内容 本实践目标是掌握metasploit的基本应用方式,重点常用的三种攻击方式的思路.具体需要完成: 一个主动攻击实 ...
随机推荐
- Android移动、缩放和旋转手势实现
Android的部分图片编辑应用中需要对图片进行移动.缩放和旋转,这些变化都依赖于触摸手势实现,而本文主要阐述移动.缩放和旋转手势的简单实现. 一.移动 首先需要从触摸事件(MotionEvent)中 ...
- Vulkan学习笔记之开发环境搭建
一.概述 最近因为工作需要开始学习Vulkan的相关知识,作为初学者,发现相对较好的学习资料莫过于vulkan-tutorial,在自己学习Vulkan的过程中,决定将自己的理解记录下来,一是为了加深 ...
- 在Windows操作系统中,使用powershell脚本批量删除、批量替换文件名
比如我们下载的mp3文件或者小说.评书里都带很多作者.网站等信息,如何批量一键删除掉多余的字段呢? 下面举例:批量删除文件名称 可以看到原文中,所有文件名中均包含"小番茄与火龙果-" ...
- C# 如何读取Excel文件
当处理Excel文件时,从中读取数据是一个常见的需求.通过读取Excel数据,可以获取电子表格中包含的信息,并在其他应用程序或编程环境中使用这些数据进行进一步的处理和分析.本文将分享一个使用免费库来实 ...
- Ascend CL两种数据预处理的方式:AIPP和DVPP
摘要:本文介绍了昇腾CANN提供的两种数据预处理的方式:DVPP和AIPP,介绍了两者的功能.差别及联系,并以具体代码示例介绍了如何使用DVPP和AIPP的功能. 本文分享自华为云社区<了解As ...
- 基于ModelArts进行流感患者密接排查
摘要:针对疫情期间存在的排查实时性差.排查效率低.无法追踪密接者等问题,可以使用基于YOLOv4的行人检测.行人距离估计.多目标跟踪的方案进行解决. 本文分享自华为云社区<基于ModelArts ...
- 为了减少代码复杂度,我将if-else升级为面向状态编程
摘要:面向过程设计和面向对象设计的主要区别是:是否在业务逻辑层使用冗长的if else判断. 本文分享自华为云社区<从面向if-else编程升级为面向状态编程,减少代码复杂度>,作者:br ...
- 初探语音识别ASR算法
摘要:语音转写文字ASR技术的基本概念与数学原理简介. 本文分享自华为云社区<新手语音入门(三): 语音识别ASR算法初探 | 编码与解码 | 声学模型与语音模型 | 贝叶斯公式 | 音素> ...
- Spring Boot Admin 离线实例
一直处于离线状态 spring.boot.admin.client.instance.prefer-ip Use the ip-address rather then the hostname in ...
- pytest参数化及应用
Pytest 安装pytest #安装pytest pip install pytest #检查是否安装 pytest --version 创建第一个测试 def func(x): return x ...