https://github.com/rollno748/di-kafkameter/wiki#producer-elements

Introduction

DI-Kafkameter is a JMeter plugin that allows you to test and measure the performance of Apache Kafka.

Components

The DI-Kafkameter comprises of 2 components, which are

  • Producer Component
    1. Kafka Producer Config
    2. Kafka Producer Sampler
  • Consumer Component
    1. Kafka Consumer Config
    2. Kafka Consumer Sampler

Producer Component (Publish a Message to a Topic)

To publish/send a message to a Kafka topic you need to add producer components to the testplan.

  • The Kafka Producer config is responsible to hold the connection information, which includes security and other properties required to talk to the broker.
  • The Kakfa Producer Sampler helps to send messages to the topic with the connection established using Config element.

Right click on Test Plan -> Add -> Config Element -> Kafka Producer Config

Provide a Variable name to export the connection object (Which will be used in Sampler element)

Provide the Kafka connection configs (list of Brokers with comma separated)

Provide a Client ID (Make it unique, to define where you sending the message from)

Select the right security to connect to brokers (This will be completely based on how Kafka security is defined)

For JAAS Security, You need to add the below key and value to the Additional Properties
Config key: sasl.jaas.config
Config value: org.apache.kafka.common.security.scram.ScramLoginModule required username="<USERNAME>" password="<PASSWORD>";

Right click on Test Plan -> Add -> Sampler -> Kafka Producer Sampler

Use the same Variable name which was defined in the config element

Define the topic name where you want to send the message (Case sensitive)

Kafka Message - The Original message which needs to be pushed to the topic

Partition String (Optional) - This option helps you to post messages to particular partition by providing the partition number

Message Headers (Optional) - This helps in adding headers to the messages which are being pushed (Supports more than one header)

Consumer Component (Read Message from a topic)

To Consume/Read a message from a Kafka topic you need to add Consumer components to the testplan.

  • The Kafka Consumer config is responsible to hold the connection information, which includes security and other properties required to talk to the broker.
  • The Kafka Consumer Sampler helps to read messages from the topic with the connection established using Config element.

Right click on Test Plan -> Add -> Config Element -> Kafka Consumer Config

Provide a Variable name to export the connection object (Which will be used in Sampler element)

Provide the Kafka connection configs (list of Brokers with comma separated)

Provide a Group ID (Make it unique, to define the group your consumer belongs to)

Define the topic name where you want to send the message (Case sensitive)

No Of Messages to Poll - This allows you to define the number of messages to read within a request (Defaults to 1)

Select the right security to connect to brokers (This will be completely based on how Kafka security is defined)

Auto Commit - This will set the offset as read, once the message is consumed

Select the right security to connect to brokers (This will be completely based on how Kafka security is defined)

For JAAS Security, You need to add the below key and value to the Additional Properties
Config key: sasl.jaas.config
Config value: org.apache.kafka.common.security.scram.ScramLoginModule required username="<USERNAME>" password="<PASSWORD>";

Right click on Test Plan -> Add -> Sampler -> Kafka Consumer Sampler

Use the same Variable name which was defined in the config element

Poll timeout - This helps to set the polling timeout for consumer to read from topic (Defaults to 100 ms)

Commit Type - Defines the Commit type (Sync/Async)

Producer Properties

Supported Producer properties which can be added to Additional Properties field.

Property Available Options Default
acks [0, 1, -1] 1
batch.size positive integer 16384
bootstrap.servers comma-separated host:port pairs localhost:9092
buffer.memory positive long 33554432
client.id string ""
compression.type [none, gzip, snappy, lz4, zstd] none
connections.max.idle.ms positive long 540000
delivery.timeout.ms positive long 120000
enable.idempotence [true, false] false
interceptor.classes fully-qualified class names []
key.serializer fully-qualified class name org.apache.kafka.common.serialization.StringSerializer
linger.ms non-negative integer 0
max.block.ms non-negative long 60000
max.in.flight.requests.per.connection positive integer 5
max.request.size positive integer 1048576
metadata.fetch.timeout.ms positive long 60000
metadata.max.age.ms positive long 300000
partitioner.class fully-qualified class name org.apache.kafka.clients.producer.internals.DefaultPartitioner
receive.buffer.bytes positive integer 32768
reconnect.backoff.ms non-negative long 50
request.timeout.ms positive integer 30000
retries non-negative integer 0
sasl.jaas.config string null
sasl.kerberos.kinit.cmd string /usr/bin/kinit
sasl.kerberos.min.time.before.relogin positive long 60000
sasl.kerberos.service.name string null
sasl.mechanism [GSSAPI, PLAIN, SCRAM-SHA-256, SCRAM-SHA-512] GSSAPI
security.protocol [PLAINTEXT, SSL, SASL_PLAINTEXT, SASL_SSL] PLAINTEXT
sender.flush.timeout.ms non-negative long 0
send.buffer.bytes positive integer 131072
value.serializer fully-qualified class name org.apache.kafka.common.serialization.StringSerializer

Consumer Properties

Supported Consumer properties which can be added to Additional Properties field.

Property Available Options Default
auto.commit.interval.ms positive integer 5000
auto.offset.reset [earliest, latest, none] latest
bootstrap.servers comma-separated host:port pairs localhost:9092
check.crcs [true, false] true
client.id string ""
connections.max.idle.ms positive long 540000
enable.auto.commit [true, false] true
exclude.internal.topics [true, false] true
fetch.max.bytes positive long 52428800
fetch.max.wait.ms non-negative integer 500
fetch.min.bytes non-negative integer 1
group.id string ""
heartbeat.interval.ms positive integer 3000
interceptor.classes fully-qualified class names []
isolation.level [read_uncommitted, read_committed] read_uncommitted
key.deserializer fully-qualified class name org.apache.kafka.common.serialization.StringDeserializer
max.partition.fetch.bytes positive integer 1048576
max.poll.interval.ms positive long 300000
max.poll.records positive integer 500
metadata.max.age.ms positive long 300000
metadata.fetch.timeout.ms positive long 60000
receive.buffer.bytes positive integer 32768
reconnect.backoff.ms non-negative long 50
request.timeout.ms positive integer 30000
retry.backoff.ms non-negative long 100
sasl.jaas.config string null
sasl.kerberos.kinit.cmd string /usr/bin/kinit
sasl.kerberos.min.time.before.relogin positive long 60000
sasl.kerberos.service.name string null
sasl.mechanism [GSSAPI, PLAIN, SCRAM-SHA-256, SCRAM-SHA-512] GSSAPI
security.protocol [PLAINTEXT, SSL, SASL_PLAINTEXT, SASL_SSL] PLAINTEXT
send.buffer.bytes positive integer 131072
session.timeout.ms positive integer 10000
value.deserializer fully-qualified class name org.apache.kafka.common.serialization.StringDeserializer

[转帖]Welcome to the di-kafkameter wiki!的更多相关文章

  1. 用Zim替代org-mode?

    三年前我玩过Zim,当时还写了一篇<Zim - 普通人的Org-mode>,当时还说我还是会坚持使用emacs org-mode.但最近我又在考虑是不是回头用Zim来写博客文章.整理知识库 ...

  2. jmeter取样器之KafkaProducerSampler(往kafka插入数据)

    项目背景 性能测试场景中有一个业务场景的数据抽取策略是直接使用kafka队列,该场景需要准备的测试数据是kafka队列里的数据,故需要实现插入数据到kafka队列,且需要实现控制每分钟插入多少条数据. ...

  3. 【好文转帖】控制反转(IOC)和依赖注入(DI)的区别

    IOC   inversion of control  控制反转 DI   Dependency Injection  依赖注入 要理解这两个概念,首先要搞清楚以下几个问题: 参与者都有谁? 依赖:谁 ...

  4. [转帖]什么是IOC(控制反转)、DI(依赖注入)

    什么是IOC(控制反转).DI(依赖注入) 2018-08-22 21:29:13 Ming339456 阅读数 20642   原文地址(摘要了部分内容):https://blog.csdn.net ...

  5. Ninject之旅之一:理解DI

    摘要: DI(IoC)是当前软件架构设计中比较时髦的技术.DI(IoC)可以使代码耦合性更低,更容易维护,更容易测试.现在有很多开源的依赖反转的框架,Ninject是其中一个轻量级开源的.net DI ...

  6. [Android分享] 【转帖】Android ListView的A-Z字母排序和过滤搜索功能

      感谢eoe社区的分享   最近看关于Android实现ListView的功能问题,一直都是小伙伴们关心探讨的Android开发问题之一,今天看到有关ListView实现A-Z字母排序和过滤搜索功能 ...

  7. MVC 5 + EF6 完整教程15 -- 使用DI进行解耦

    如果大家研究一些开源项目,会发现无处不在的DI(Dependency Injection依赖注入). 本篇文章将会详细讲述如何在MVC中使用Ninject实现DI 文章提纲 场景描述 & 问题 ...

  8. [转帖][分享] 关于系统DIY--by 原罪

    http://wuyou.net/forum.php?mod=viewthread&tid=399277&extra=page%3D1 前几天我发了一个帖子<Windows组件w ...

  9. AngularJs学习笔记--Dependency Injection(DI,依赖注入)

    原版地址:http://code.angularjs.org/1.0.2/docs/guide/di 一.Dependency Injection(依赖注入) 依赖注入(DI)是一个软件设计模式,处理 ...

  10. 原创:Javascript DI!Angular依赖注入的实现原理

    DI是Angular的特色功能,而在Angular 2.0的计划中,DI将成为一个独立的模块,参见 https://github.com/angular/di.js 这意味着它也有机会被用于nodej ...

随机推荐

  1. 常见的Java中SQL注解的用法

    @Select:用于查询操作,标注在方法上,指定相应的SQL查询语句. @Select("SELECT * FROM table_name WHERE condition") Li ...

  2. SQL Server系列:系统函数之聚合函数

    聚合函数:指对一组值执行计算,并返回单个值.除了 Count(统计函数) 外,聚合函数都会忽略 Null 值 聚合函数经常与 SELECT 语句的 GROUP BY 子句一起使用 1.Avg():返回 ...

  3. KubeCon China 2023 | 拥抱开源,华为云原生华彩绽放

    本文分享自华为云社区<KubeCon China 2023 | 拥抱开源,华为云原生华彩绽放>,作者: 云容器大未来 . 2023 年度云原生全球旗舰盛会 KubeCon + CloudN ...

  4. 事件Event:带你体验鸿蒙轻内核中一对多、多对多任务同步

    摘要:本文通过分析鸿蒙轻内核事件模块的源码,深入掌握事件的使用. 本文分享自华为云社区<鸿蒙轻内核M核源码分析系列十二 事件Event>,原文作者:zhushy . 事件(Event)是一 ...

  5. Spark 开源新特性:Catalyst 优化流程裁剪

    摘要:为了解决过多依赖 Hive 的问题, SparkSQL 使用了一个新的 SQL 优化器替代 Hive 中的优化器, 这个优化器就是 Catalyst. 本文分享自华为云社区<Spark 开 ...

  6. GaussDB(DWS) NOT IN优化技术解密:排他分析场景400倍性能提升

    摘要:本文针对8.1.2版本中的NOT IN场景的Mixed-HashJoin新技术进行介绍.该技术在GaussDB(DWS)与招商银行的联创项目中落地,为招商银行的批量作业带来了总体15%的性能提升 ...

  7. Git 工具 - 子模块: submodule与subtree的使用

    git日常使用中,基本都是一个项目一个Git仓库的形式,那么当我们的代码中碰到了业务级别的需要复用的代码,我们一般怎么做呢? 比如:某个工作中的项目需要包含并使用另一个项目. 也许是第三方库,或者你独 ...

  8. 火山引擎A/B测试在消费行业的案例实践

    更多技术交流.求职机会,欢迎关注字节跳动数据平台微信公众号,回复[1]进入官方交流群 近日,火山引擎数智平台举办了"走进火山-全链路增长:数据飞轮转动消费新生力"的活动,其中火山引 ...

  9. IDEA画图神器 PlantUML

    PlantUML 是一款开源的UML图绘制工具,支持通过文本来生成图形,使用起来非常高效.可以支持时序图.类图.对象图.活动图.思维导图等图形的绘制. 下面使用PlantUML来绘制一张流程图,可以实 ...

  10. CompletableFuture 打桌球的应用

    CompletableFuture 使用 @Test public void billiardTest() throws Exception { // 创建点外卖线程: CompletableFutu ...