题目链接

题目

题目描述

有一棵点数为N的树,树边有边权。给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染成白色。

将所有点染色后,你会获得黑点两两之间的距离加上白点两两之间距离的和的收益。问收益最大值是多少。

输入描述

第一行两个整数N,K。

接下来N-1行每行三个正整数fr,to,dis,表示该树中存在一条长度为dis的边(fr,to)。

输入保证所有点之间是联通的。N ≤ 2000,0 ≤ K ≤ N

输出描述

输出一个正整数,表示收益的最大值。

示例1

输入

5 2
1 2 3
1 5 1
2 3 1
2 4 2

输出

17

说明

【样例解释】

将点1,2染黑就能获得最大收益。

备注

对于100% 的数据,\(0 \leq n,k \leq 2000\) 。

题解

知识点:树形dp,背包dp。

这道题长见识了,虽然显然是树上背包,但状态很妙。

设 \(dp[u][i]\) 为以 \(u\) 为根的子树选了 \(i\) 个点染黑后对答案的最大总贡献,注意这里是子树对答案的贡献,而非子树内的贡献。如果只是子树内的贡献,会发现转移时不知道点的具体位置,从而不能计算权值的变化,无法转移;而计算子树对整个答案的贡献就不需要考虑内点位置,而只要考虑父节点与子树根节点连的那条边的权值与子树染黑节点的数量即可转移。转移方程为:

\[dp[u][i] = \max(dp[u][i], dp[u][i - j] + dp[v][j] + val)
\]

其中, \(val = j(m - j) \cdot w + (sz[v] - j)(n - m - (sz[v] - j)) \cdot w\) ,这里我把题目中的 \(K\) 改为了 \(m\) 方便使用。

首先转移方程表示为 \(u\) 为根的子树选了 \(i-j\) 个点染黑,\(v\) 为根的子树选了 \(j\) 个点染黑,并连接 \((u,v)\) 这条边产生 \(val\) 的总贡献是否更大。前面两个没什么问题,考虑 \(val\) 如何计算。

设 \((u,v)\) 的权为 \(w\) ,则 \((u,v)\) 两边的黑节点和白节点的每个组合都能多一次 \(w\) 的贡献。因此黑节点的组合贡献多了 \(j(m-j) \cdot w\) ,因为一端是子树 \(j\) 个黑节点,另一端是其他 \(m-j\) 个黑节点;白节点的组合贡献多了 \((sz[v] - j)(n - m - (sz[v] - j)) \cdot w\) ,因为子树有 \(sz[v]-j\) 个白节点,其他有 \(n-m-(sz[v]-j)\) 个白节点。最后加起来就是 \(val\) 。

到这里整道题算是做完了,但细节上有很多值得注意的。比如 \(j=0\) 时,会发现转移方程变为:

\[dp[u][i] = \max(dp[u][i], dp[u][i] + dp[v][0] + val)
\]

直接原地更新了,这意味着更新 \(j=0\) 时, \(dp[u][i]\) 必须是原来的,这导致 \(j=0\) 必须第一个更新,才能更新别的,正序更新是直接满足这个要求。

除此之外还需要对dp范围进行剪枝,不然铁定超时。这里推荐用刷表法,因为最佳循环条件十分容易就能写出来(即没有浪费一点时间在没用的状态上),打表法不是不能写但非常麻烦,如下面我给出代码就是用打表法写的,虽然这道题用不着这么严格。

剪枝后的复杂度可以证明是 \(O(nm)\) 。

时间复杂度 \(O(nm)\)

空间复杂度 \(O(nm)\)

代码

#include <bits/stdc++.h>
#define ll long long using namespace std; int n, m;
vector<pair<int, int>> g[2007];
int sz[2007];
ll dp[2007][2007]; void dfs(int u, int fa) {
sz[u] = 1;
//dp[u][0] = dp[u][1] = 0;
for (auto [v, w] : g[u]) {
if (v == fa) continue;
dfs(v, u);
sz[u] += sz[v];
for (int i = min(sz[u], m);i >= 0;i--) {
for (int j = max(sz[v] - sz[u] + i, 0);j <= min(i, sz[v]);j++) {
///严格区间可以省掉许多时间(这道题是几百倍),但一般不敢这么严格,通常负无穷区间即可。
///不过这道题用刷表法后,严格区间会很好得到
///这道题需要加两个min限制一下不然会超时,但j的起点max是不必要的。
ll val = 1LL * j * (m - j) * w + 1LL * (sz[v] - j) * (n - m - (sz[v] - j)) * w;
dp[u][i] = max(dp[u][i], dp[u][i - j] + dp[v][j] + val);
///注意j=0时,dp[i][j]会被自己更新,如果j是倒序,会导致之前修改的重复作用,因此j=0必须第一个修改好,其他的顺序随意
}
}
}
} int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
cin >> n >> m;
for (int i = 1;i < n;i++) {
int u, v, w;
cin >> u >> v >> w;
g[u].push_back({ v,w });
g[v].push_back({ u,w });
}
//memset(dp, -0x3f, sizeof(dp));
dfs(1, 0);
cout << dp[1][m] << '\n';
return 0;
}

NC19996 [HAOI2015]树上染色的更多相关文章

  1. bzoj 4033: [HAOI2015]树上染色 [树形DP]

    4033: [HAOI2015]树上染色 我写的可是\(O(n^2)\)的树形背包! 注意j倒着枚举,而k要正着枚举,因为k可能从0开始,会使用自己更新一次 #include <iostream ...

  2. BZOJ4033: [HAOI2015]树上染色(树形DP)

    4033: [HAOI2015]树上染色 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 3461  Solved: 1473[Submit][Stat ...

  3. BZOJ4033 HAOI2015 树上染色 【树上背包】

    BZOJ4033 HAOI2015 树上染色 Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染成白 ...

  4. [BZOJ4033][HAOI2015]树上染色(树形DP)

    4033: [HAOI2015]树上染色 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 2437  Solved: 1034[Submit][Stat ...

  5. 【BZOJ4033】[HAOI2015]树上染色 树形DP

    [BZOJ4033][HAOI2015]树上染色 Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染 ...

  6. BZOJ_4033_[HAOI2015]树上染色_树形DP

    BZOJ_4033_[HAOI2015]树上染色_树形DP Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并 将其他的 ...

  7. BZOJ 4033[HAOI2015] 树上染色(树形DP)

    4033: [HAOI2015]树上染色 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 3188  Solved: 1366[Submit][Stat ...

  8. [HAOI2015]树上染色(树形dp)

    [HAOI2015]树上染色 题目描述 有一棵点数为 N 的树,树边有边权.给你一个在 0~ N 之内的正整数 K ,你要在这棵树中选择 K个点,将其染成黑色,并将其他 的N-K个点染成白色 . 将所 ...

  9. [HAOI2015]树上染色(树上dp)

    [HAOI2015]树上染色 这种要算点对之间路径的长度和的题,难以统计每个点的贡献.这个时候一般考虑算每一条边贡献了哪些点对. 知道这个套路以后,那么这题就很好做了. 状态:设\(dp[u][i]\ ...

  10. [HAOI2015]树上染色 树状背包 dp

    #4033. [HAOI2015]树上染色 Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并 将其他的N-K个点染成白 ...

随机推荐

  1. centos7_Lnmp编译安装

    17年面试运维岗位的时候,面试官要求输出一份lnmp编译的操作文档,于是有了如下安装nginx+php+mysql,进入正题: 准备环境 环境:centos7.3 软件:nginx-1.12.1 + ...

  2. 分享一个在线二维码生成器(基于qrcode.js开发)

    一种二维码扫描与生成的工具, 它可生成个性化二维码, 支持文本.网址.图片.短信.电话等格式及主题,提供融合码功能 演示地址 https://qrcode.gitapp.cn 关键代码 var qrc ...

  3. 百度网盘(百度云)SVIP超级会员共享账号每日更新(2023.12.27)

    一.百度网盘SVIP超级会员共享账号 可能很多人不懂这个共享账号是什么意思,小编在这里给大家做一下解答. 我们多知道百度网盘很大的用处就是类似U盘,不同的人把文件上传到百度网盘,别人可以直接下载,避免 ...

  4. [转帖]清除掉shared pool中某条sql语句方法

    https://www.xifenfei.com/2012/02/%E6%B8%85%E9%99%A4%E6%8E%89shared-pool%E4%B8%AD%E6%9F%90%E6%9D%A1sq ...

  5. [转帖]clickhouse安装部署以及版本选取

    https://www.cnblogs.com/MrYang-11-GetKnow/p/15818768.html 1. 系统要求 ClickHouse 可以在任何具有 x86_64.AArch64 ...

  6. [转帖]谁动了我的 CPU 频率 —— CPU 性能之迷 Part 2

    https://blog.mygraphql.com/zh/notes/low-tec/kernel/cpu-frequency/ 目录: 为何有本文 什么是动态 CPU 频率 什么是 p-state ...

  7. [转帖]TiDB的tikv节点的压缩算法

    简介:TiDB的tikv节点实用的RocksDB,RocksDB的默认压缩算法为:[no:no:lz4:lz4:lz4:zstd:zstd] RocksDB 每一层数据的压缩方式,可选的值为:no,s ...

  8. [转帖]“炫技”还是“真硬核”,OpenPPL 实测阿里「倚天 710」芯片

    http://www.voycn.com/article/xuanjihaishizhenyingheopenppl-shicealiyitian-710-xinpian   本文将以深度学习模型推理 ...

  9. 什么是PWA 应用?核心技术有哪些

    在国内由于小程序的风生水起,PWA 应用在国内的状况一直都不是很好,PWA 和小程序有很多的相似性,但是 PWA 是由谷歌发起的技术,小程序是微信发起的技术,所以小程序在国内得到了大力的扶持,很快就在 ...

  10. zookeeper的Leader选举源码解析

    作者:京东物流 梁吉超 zookeeper是一个分布式服务框架,主要解决分布式应用中常见的多种数据问题,例如集群管理,状态同步等.为解决这些问题zookeeper需要Leader选举进行保障数据的强一 ...