ONNX Runtime简介

ONNX Runtime 是一个跨平台的推理和训练机器学习加速器。ONNX 运行时推理可以实现更快的客户体验和更低的成本,支持来自深度学习框架(如 PyTorch 和 TensorFlow/Keras)以及经典机器学习库(如 scikit-learn、LightGBM、XGBoost 等)的模型。 ONNX 运行时与不同的硬件、驱动程序和操作系统兼容,并通过利用硬件加速器(如果适用)以及图形优化和转换来提供最佳性能。

ResNet50v2简介

ResNet50v2 是一种深度卷积神经网络架构,是 ResNet(Residual Network,残差网络)系列的一部分。ResNet 是由何凯明等人在 2015 年提出的,它通过引入残差块(Residual Block)解决了深度神经网络训练过程中梯度消失和梯度爆炸的问题,使得构建非常深的网络成为可能。ResNet50v2 被广泛应用于各种计算机视觉任务,如图像分类、目标检测、图像分割等。由于其深度和强大的特征学习能力,ResNet50v2 在众多基准测试中表现出色,是许多研究和应用中的首选模型之一。

示例

这个示例代码在

https://github.com/microsoft/onnxruntime/tree/main/csharp/sample/Microsoft.ML.OnnxRuntime.ResNet50v2Sample

fork一份,克隆到本地,在本地打开这个项目,项目结构如下所示:

依赖的包除了OnnxRuntime还有ImageSharp。

ImageSharp简介

ImageSharp 是一个新的、功能齐全、完全托管的跨平台 2D 图形库。ImageSharp 旨在简化图像处理,为您带来一个非常强大而又非常简单的 API。

ImageSharp 从头开始设计,具有灵活性和可扩展性。该库为常见的图像处理操作提供了 API 端点,并为开发其他操作提供了构建块。

ImageSharp 针对 .NET 8 构建,可用于设备、云和嵌入式/IoT 方案。

下载 ResNet50 v2 ONNX 模型,下载地址在:

https://github.com/onnx/models/blob/main/validated/vision/classification/resnet/model/resnet50-v2-7.onnx

读取路径

首先,源代码中是通过程序参数读取模型的路径和要测试的图像的路径,也可以直接赋值:

// Read paths
//string modelFilePath = args[0];
//string imageFilePath = args[1];
string modelFilePath = @"你的路径\Microsoft.ML.OnnxRuntime.ResNet50v2Sample\resnet50-v2-7.onnx";
string imageFilePath = @"你的路径\Microsoft.ML.OnnxRuntime.ResNet50v2Sample\狮子.jpg";

读取图像

接下来,我们将使用跨平台图像库 ImageSharp 读取图像:

 // Read image
using Image<Rgb24> image = Image.Load<Rgb24>(imageFilePath);

调整图像大小

接下来,我们将图像大小调整为模型期望的适当大小;224 像素 x 224 像素:

using Stream imageStream = new MemoryStream();
image.Mutate(x =>
{
x.Resize(new ResizeOptions
{
Size = new Size(224, 224),
Mode = ResizeMode.Crop
});
});
image.Save(imageStream, format);

预处理图像

接下来,我们将根据模型的要求对图像进行预处理,具体要求见:

https://github.com/onnx/models/tree/main/validated/vision/classification/resnet#preprocessing

// We use DenseTensor for multi-dimensional access to populate the image data
var mean = new[] { 0.485f, 0.456f, 0.406f };
var stddev = new[] { 0.229f, 0.224f, 0.225f };
DenseTensor<float> processedImage = new(new[] { 1, 3, 224, 224 });
image.ProcessPixelRows(accessor =>
{
for (int y = 0; y < accessor.Height; y++)
{
Span<Rgb24> pixelSpan = accessor.GetRowSpan(y);
for (int x = 0; x < accessor.Width; x++)
{
processedImage[0, 0, y, x] = ((pixelSpan[x].R / 255f) - mean[0]) / stddev[0];
processedImage[0, 1, y, x] = ((pixelSpan[x].G / 255f) - mean[1]) / stddev[1];
processedImage[0, 2, y, x] = ((pixelSpan[x].B / 255f) - mean[2]) / stddev[2];
}
}
});

在这里,我们正在创建一个所需大小 (batch-size, channels, height, width) 的张量,访问像素值,对其进行预处理,最后将它们分配给适当指示的张量。

设置输入

接下来,我们将创建模型的输入:

using var inputOrtValue = OrtValue.CreateTensorValueFromMemory(OrtMemoryInfo.DefaultInstance,
processedImage.Buffer, new long[] { 1, 3, 224, 224 }); var inputs = new Dictionary<string, OrtValue>
{
{ "data", inputOrtValue }
}

要检查 ONNX 模型的输入节点名称,您可以使用 Netron 可视化模型并查看输入/输出名称。在本例中,此模型具有 data 作为输入节点名称。

运行推理

接下来,我们将创建一个推理会话并通过它运行输入:

using var session = new InferenceSession(modelFilePath);
using var runOptions = new RunOptions();
using IDisposableReadOnlyCollection<OrtValue> results = session.Run(runOptions, inputs, session.OutputNames);

后处理输出

接下来,我们需要对输出进行后处理以获得 softmax 向量,因为这不是由模型本身处理的:

var output = results[0].GetTensorDataAsSpan<float>().ToArray();
float sum = output.Sum(x => (float)Math.Exp(x));
IEnumerable<float> softmax = output.Select(x => (float)Math.Exp(x) / sum);

其他型号可能会在输出之前应用 Softmax 节点,在这种情况下,您不需要此步骤。同样,您可以使用 Netron 查看模型输出。

提取前10个预测结果

IEnumerable<Prediction> top10 = softmax.Select((x, i) => new Prediction { Label = LabelMap.Labels[i], Confidence = x })
.OrderByDescending(x => x.Confidence)
.Take(10);

打印结果

Console.WriteLine("Top 10 predictions for ResNet50 v2...");
Console.WriteLine("--------------------------------------------------------------");
foreach (var t in top10)
{
Console.WriteLine($"Label: {t.Label}, Confidence: {t.Confidence}");
}

本例的示例图片是一只狮子,如下所示:

查看预测结果:

在LabelMap类中可以查看该模型可以识别的物体:

例如cock是公鸡的意思,我们可以现场找一张公鸡的图片,查看效果。

找到的一张公鸡图片如下所示:

修改测试图片为这种图片,再次运行,结果如下所示:

成功识别出了公鸡。

总结

以上就完成了ONNX Runtime的入门示例,可以根据兴趣与需求尝试使用其他的模型。

参考

1、Image recognition with ResNet50v2 in C# | onnxruntime

2、models/validated/vision/classification/resnet/model/resnet50-v2-7.onnx at main · onnx/models (github.com)

3、microsoft/onnxruntime: ONNX Runtime: cross-platform, high performance ML inferencing and training accelerator (github.com)

4、SixLabors/ImageSharp: A modern, cross-platform, 2D Graphics library for .NET (github.com)

ONNX Runtime入门示例:在C#中使用ResNet50v2进行图像识别的更多相关文章

  1. Optimum + ONNX Runtime: 更容易、更快地训练你的 Hugging Face 模型

    介绍 基于语言.视觉和语音的 Transformer 模型越来越大,以支持终端用户复杂的多模态用例.增加模型大小直接影响训练这些模型所需的资源,并随着模型大小的增加而扩展它们.Hugging Face ...

  2. [WCF编程]1.WCF入门示例

    一.WCF是什么? Windows Communication Foundation(WCF)是由微软开发的一系列支持数据通信的应用程序框架,整合了原有的windows通讯的 .net Remotin ...

  3. Spring MVC 入门示例讲解

    在本例中,我们将使用Spring MVC框架构建一个入门级web应用程序.Spring MVC 是Spring框架最重要的的模块之一.它以强大的Spring IoC容器为基础,并充分利用容器的特性来简 ...

  4. Linq to NHibernate入门示例

    Linq to NHibernate入门示例 NHibernate相关: 09-08-25连贯NHibernate正式发布1.0候选版 09-08-17NHibernate中一对一关联的延迟加载 09 ...

  5. Spring MVC 入门示例讲解 - howtodoinjava

    在本例中,我们将使用Spring MVC框架构建一个入门级web应用程序.Spring MVC 是Spring框架最重要的的模块之一.它以强大的Spring IoC容器为基础,并充分利用容器的特性来简 ...

  6. 微软推出了Cloud Native Application Bundles和开源ONNX Runtime

    微软的Microsoft Connect(); 2018年的开发者大会 对Azure和IoT Edge服务进行了大量更新; Windows Presentation Foundation,Window ...

  7. Maven入门示例(3):自动部署至外部Tomcat

    Maven入门示例(3):自动部署至外部Tomcat 博客分类:  maven 2012原创   Maven入门示例(3):自动部署至外部Tomcat 上一篇,介绍了如何创建Maven项目以及如何在内 ...

  8. 1.【转】spring MVC入门示例(hello world demo)

    1. Spring MVC介绍 Spring Web MVC是一种基于Java的实现了Web MVC设计模式的请求驱动类型的轻量级Web框架,即使用了MVC架构模式的思想,将web层进行职责解耦,基于 ...

  9. 【java开发系列】—— spring简单入门示例

    1 JDK安装 2 Struts2简单入门示例 前言 作为入门级的记录帖,没有过多的技术含量,简单的搭建配置框架而已.这次讲到spring,这个应该是SSH中的重量级框架,它主要包含两个内容:控制反转 ...

  10. Couchbase之个人描述及入门示例

    本文不打算抄袭官方或者引用他人对Couchbase的各种描述,仅仅是自己对它的一点理解(错误之处,敬请指出),并附上一个入门示例. ASP.NET Web项目(其他web开发平台也一样)应用规模小的时 ...

随机推荐

  1. 简化 Python 日志管理:Loguru 入门指南

    简化 Python 日志管理:Loguru 入门指南 在开发和维护软件项目时,高效的日志管理系统对于监控应用程序的行为.调试代码和追踪异常至关重要.Python 的标准日志模块虽然功能强大,但其配置和 ...

  2. SAP集成技术(十)混合集成平台

    混合集成平台hybrid integration platform (有时缩写为HIP)这个术语近年来被大量使用,但很多人可能不太清楚它的概念. 内容摘录自<SAP Interface Mana ...

  3. 简说python之批量操作主机

    目录 Python批量操作主机 安装paramiko模块 远程ssh控制主机 目前,很多的工作都是批量的操作Linux主机.通过python脚本,封装Linux的shell命令.保证批量操作,简易优化 ...

  4. 11.IO 流

    1.IO 流引入 概述:以应用程序为参照物,读取数据为输入流(Input),写数据为输出流(Output),大量输入输出数据简称 IO 流 原理: 2.IO 流的分类 读写的文件分类 二进制文件:打开 ...

  5. gin 图片上传到本地或者oss

    路由层 func registerCommonRouter(v1 *gin.RouterGroup) { up := v1.Group("upload") { up.POST(&q ...

  6. 如何获取Github Token

    登录我们的github账号,点击头像后选择Settings 进入界面之后下拉到左侧菜单的最后,选择Developer settings 进入界面后,选择Personal access tokens-- ...

  7. 介绍几种常用的Oracle客户端工具

    首发微信公众号:SQL数据库运维 原文链接:https://mp.weixin.qq.com/s?__biz=MzI1NTQyNzg3MQ==&mid=2247485212&idx=1 ...

  8. MySQL优化方向

    MySQL优化手段 数据库设计层面 范式设计 减少数据冗余 提高数据一致性 索引策略 选择合适的索引类型 (BTREE, HASH) 覆盖索引 索引选择性 表结构优化 使用合适的数据类型 避免使用NU ...

  9. Scala集合flatten操作

    一层嵌套,但是flatten的要求需要List内部类型都一样, 例如都为List scala> List(List(1), List(2), List(3)).flatten res4: Lis ...

  10. mac for docker访问宿主机服务

    转载链接 https://blog.csdn.net/weixin_33860528/article/details/91461648