洛谷 P2519 [HAOI2011]problem a
考虑转化为求最多说真话的人数
设$f(i)$表示排名前$i$的人中最多说真话的人的数量,考虑转移,如果由$j$转移而来,可以设$[j,i]$之间的人全都分数相等,那么式子就是$f[i]=f[j-1]+sum([j,i])$,其中$sum([j,i])$表示处在这个区间的人数,全部分数相等,另外如果人数多于区间数,多出来的人都在说谎
//minamoto
#include<bits/stdc++.h>
#define mp(i,j) make_pair(i,j)
using namespace std;
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
template<class T>inline bool cmax(T&a,const T&b){return a<b?a=b,:;}
inline int read(){
#define num ch-'0'
char ch;bool flag=;int res;
while(!isdigit(ch=getc()))
(ch=='-')&&(flag=true);
for(res=num;isdigit(ch=getc());res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
const int N=;
vector<int> a[N];int n,f[N];map<pair<int,int>,int> x;
vector<int>::iterator ii;
int main(){
// freopen("testdata.in","r",stdin);
n=read();
for(int i=;i<=n;++i){
int l=read(),r=read();
++l,r=n-r;
if(l>r) continue;
if(++x[mp(l,r)]==) a[r].push_back(l);
}
for(int i=;i<=n;++i){
f[i]=f[i-];
for(ii=a[i].begin();ii!=a[i].end();++ii)
cmax(f[i],f[(*ii)-]+min(i-(*ii)+,x[mp(*ii,i)]));
}
printf("%d\n",n-f[n]);
return ;
}
洛谷 P2519 [HAOI2011]problem a的更多相关文章
- 洛谷P2522 - [HAOI2011]Problem b
Portal Description 进行\(T(T\leq10^5)\)次询问,每次给出\(x_1,x_2,y_1,y_2\)和\(d\)(均不超过\(10^5\)),求\(\sum_{i=x_1} ...
- 洛谷 P2523 [HAOI2011]Problem c
洛谷1或洛谷2,它们是一样的题目,手动滑稽- 这一题我是想不出来, 但是我想吐槽一下坐我左边的大佬. 大佬做题的时候,只是想了几分钟,拍了拍大腿,干脆的道:"这不是很显然吗!" 然 ...
- 洛谷P2522 [HAOI2011]Problem b(莫比乌斯反演)
传送门 我们考虑容斥,设$ans(a,b)=\sum_{i=1}^a\sum_{j=1}^b[gcd(a,b)==k]$,这个东西可以和这一题一样去算洛谷P3455 [POI2007]ZAP-Quer ...
- 洛谷P2522 [HAOI2011]Problem b (莫比乌斯反演+容斥)
题意:求$\sum_{i=a}^{b}\sum_{j=c}^{d}[gcd(i,j)==k]$(1<=a,b,c,d,k<=50000). 是洛谷P3455 [POI2007]ZAP-Qu ...
- 洛谷P2523 [HAOI2011]Problem c(计数dp)
题面 luogu 题解 首先,显然一个人实际位置只可能大于或等于编号 先考虑无解的情况 对于编号为\(i\),如果确认的人编号在\([i,n]\)中数量大于区间长度,那么就无解 记\(S[i]\)表示 ...
- 洛谷P2522 [HAOI2011]Problem b(莫比乌斯反演)
题目描述 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 输入输出格式 输入格式: 第一行一个整数 ...
- 洛谷 P2522 [HAOI2011]Problem b (莫比乌斯反演+简单容斥)
题目描述 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 输入输出格式 输入格式: 第一行一个整数 ...
- 洛谷$P2523\ [HAOI2011]\ Problem\ c$ $dp$
正解:$dp$ 解题报告: 传送门$QwQ$ 首先港下不合法的情况.设$sum_i$表示$q\geq i$的人数,当且仅当$sum_i>n-i+1$时无解. 欧克然后考虑这题咋做$QwQ$. 一 ...
- [luogu] P2519 [HAOI2011]problem a (贪心)
P2519 [HAOI2011]problem a 题目描述 一次考试共有n个人参加,第i个人说:"有ai个人分数比我高,bi个人分数比我低."问最少有几个人没有说真话(可能有相同 ...
随机推荐
- v-model指令及其修饰符
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- C++类中使用new及delete小例子(续)
在该示例中我们显式定义了复制构造函数来代替默认复制构造函数, 在该复制构造函数的函数体内, 不是再直接将源对象所申请空间的地址赋值给被初始化的对象, 而是自己独立申请一处内存后再将源对象的属性复制过来 ...
- Windows 8实用窍门系列:20.Windows 8中的GridView使用(二)和DataTemplateSelector
在本文中所讲述内容的实例仍然沿用于上篇文章,有什么疑惑可以参考上篇文章. 一 GroupStyle 在GridView控件中我们可以对数据进行分组显示,通过对GridView的GroupStyle进行 ...
- Axure Base 09 带遮罩层的弹出框
示例原型下载:小楼Axure原创元件-带遮罩层的弹出框 实现目标: 1. 点击按钮弹出带遮罩层的对话框: 2. 页面上下左右滚动时,弹出的对话框水平和垂直始终居中. 实现步骤如下: 1. 拖入 ...
- 转载-STM32片上FLASH内存映射、页面大小、寄存器映射
原文地址:http://blog.chinaunix.net/uid-20617446-id-3847242.html 本文以STM32F103RBT6为例介绍了片上Flash(Embedded Fl ...
- iOS UI控件之间的关系图
- JVM对象存活判断方法
一.GC主要针对什么区域 1. 程序计数器.虚拟机栈.本地方法栈,3个部分随线程而生死.每个栈桢分配多少内存基本上是在类结构确定下来时就已确定,大体上可认为是 编译期可知. 2. 而 堆 和 方法区 ...
- android user用户版本提高adb权限【转】
本文转载自:http://blog.csdn.net/liyongming1982/article/details/14108111 有的user用户版本的log 不全,且push/pull某些文件或 ...
- HDU1693 Eat the Trees —— 插头DP
题目链接:https://vjudge.net/problem/HDU-1693 Eat the Trees Time Limit: 4000/2000 MS (Java/Others) Mem ...
- SET IDENTITY_INSERT 和 DBCC CHECKIDENT
SET IDENTITY_INSERT (Transact-SQL) Allows explicit values to be inserted into the identity column of ...