题目

输入格式

输入仅有一行,包含两个正整数 q, n,分别表示问题编号以及叶结点的个数。

输出格式

输出仅有一行,包含一个实数 d,四舍五入精确到小数点后 6 位。如果 q = 1,则 d 表示叶结点平均深度的数学期望值;如果 q = 2,则 d 表示树深度的数学期望值。

输入样例

1 4

输出样例

2.166667

提示





题解

第一问比较简单,我们设\(f[i]\)表示第\(i\)次扩展的期望深度

那么

\[f[i] = \frac{f[i - 1] * (i - 2) + (f[i - 1] + 1) * 2}{i}
\]

化简得

\[f[i] = f[i - 1] + \frac{2}{i}
\]

第二问

首先我们有这样一个整数概率公式:

\[E(x) = \sum_{i = 1}^{+\infty} P(x >= i)
\]

含义为:随机变量\(x\)的期望为所有\(x>=i\)的概率之和

那我们设\(f[i][d]\)表示有\(i\)个叶子,深度\(>=d\)的概率,

那么

\[ans = \sum_{i = 1}^{n - 1} f[n][i]
\]

考虑转移,我们枚举左右子树分到多少叶子

\[f[i][d] = \sum_{j = 1}^{i - 1} \frac{f[j][d - 1] + f[i - j][d - 1] - f[j][d - 1]*f[i - j][d - 1]}{i - 1}
\]

其实就是一个容斥,两边都大于\(d - 1\)的部分会被算两次,减去一次即可

这样我们就做完了

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define LL long long int
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 205,maxm = 100005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
double f[maxn][maxn];
int n,t,m;
void solve1(){
double ans = 0;
for (int i = 2; i <= n; i++){
ans += 2.0 / i;
}
printf("%.6lf\n",ans);
}
void solve2(){
for (int i = 1; i <= n; i++) f[i][0] = 1;
for (int i = 2; i <= n; i++){
for (int d = 1; d < i; d++){
for (int j = 1; j < i; j++)
f[i][d] += (f[j][d - 1] + f[i - j][d - 1] - f[j][d - 1] * f[i - j][d - 1]) / (i - 1);
}
}
double ans = 0;
for (int i = 1; i < n; i++) ans += f[n][i];
printf("%.6lf\n",ans);
}
int main(){
t = read(); n = read();
if (t & 1) solve1();
else solve2();
return 0;
}

洛谷3830 [SHOI2012]随机树 【概率dp】的更多相关文章

  1. 洛谷P3830 [SHOI2012]随机树(期望dp)

    题面 luogu 题解 第一问: 设\(f[i]\)表示\(i\)步操作后,平均深度期望 \(f[i] = \frac {f[i - 1] * (i - 1)+f[i-1]+2}{i}=f[i-1]+ ...

  2. 洛谷P3830 [SHOI2012]随机树——概率期望

    题目:https://www.luogu.org/problemnew/show/P3830 询问1:f[x]表示有x个叶节点的树的叶节点平均深度: 可以把被扩展的点的深度看做 f[x-1] ,于是两 ...

  3. 【BZOJ2830/洛谷3830】随机树(动态规划)

    [BZOJ2830/洛谷3830]随机树(动态规划) 题面 洛谷 题解 先考虑第一问. 第一问的答案显然就是所有情况下所有点的深度的平均数. 考虑新加入的两个点,一定会删去某个叶子,然后新加入两个深度 ...

  4. 洛谷 P3830 [SHOI2012]随机树

    https://www.luogu.org/problemnew/show/P3830 具体方法见代码.. 其实挺神奇的,概率可以先算出“前缀和”(A小于等于xxx的概率),然后再“差分”得到A恰好为 ...

  5. luogu P3830 [SHOI2012]随机树 期望 dp

    LINK:随机树 非常经典的期望dp. 考虑第一问:设f[i]表示前i个叶子节点的期望平均深度. 因为期望具有线性性 所以可以由每个叶子节点的期望平均深度得到总体的. \(f[i]=(f[i-1]\c ...

  6. 洛谷P1850 换教室(概率dp)

    传送门 我的floyd竟然写错了?今年NOIP怕不是要爆零了? 这就是一个概率dp 我们用$dp[i][j][k]$表示在第$i$个时间段,已经申请了$j$次,$k$表示本次换或不换,然后直接暴力转移 ...

  7. 洛谷P2719 搞笑世界杯 题解 概率DP入门

    作者:zifeiy 标签:概率DP 题目链接:https://www.luogu.org/problem/P2719 我们设 f[n][m] 用于表示还剩下n张A类票m张B类票时最后两张票相同的概率, ...

  8. [SHOI2012]随机树[期望dp]

    题意 初始 \(1\) 个节点,每次选定一个叶子节点并加入两个儿子直到叶子总数为 \(n\),问叶子节点深度和的平均值的期望以及最大叶子深度的期望. \(n\leq 100\) . 分析 对于第一问, ...

  9. 洛谷P3833 [SHOI2012]魔法树(树链剖分)

    传送门 树剖板子…… 一个路径加和,线段树上打标记.一个子树询问,dfs的时候记录一下子树的区间就行 // luogu-judger-enable-o2 //minamoto #include< ...

随机推荐

  1. 图片压缩(pc端和移动端都适用)

    最近在做移动端遇到了一个问题就是: 手机拍照后,图片过大如果上传到服务器务必会浪费带宽,最重要的是流量啊 别慌,好事儿来了,务必就会有人去研究研究图片的压缩: 鄙人结合前人的经验,结合自己实战,总结出 ...

  2. java中的堆与栈

    Java 中的堆和栈 Java把内存划分成两种:一种是栈内存,一种是堆内存. 在函数中定义的一些基本类型的变量和对象的引用变量都在函数的栈内存中分配 . 当在一段代码块定义一个变量时,Java就在栈中 ...

  3. Linux之centos7 VMware安装教程

    Linux系统安装 下面是centOS7的安装过程 VMware 系统搭建 1 新建虚拟机 2 选择自定义 3 选择稍后安装操作系统 4 选择操作系统的版本Linux centos64位 5 选择处理 ...

  4. Active Directory网域

    Active Directory网域 3.1Windows网络的管理方式 3.1.1工作组模式 工作组由一组用网络连接在一起的计算机组成,他们将计算机内的资源共享给用户访问.工作组网络也被称为“对等式 ...

  5. Python基础篇 -- 列表

    3.2 列表的增删改查 ​ 列表使用 [] 来表示,列表中每个元素与元素之间用逗号隔开 ​ 列表也有索引和切片 # 切片切出来的也是列表 lst = ["梅西", "内马 ...

  6. Bootstrap 翻页(pager)

    如果您想要创建一个简单的分页链接为用户提供导航,可以通过翻页来实现.与分布链接一样,也是一个无序列表.默认情况下,翻页是居中显示的.下面列出了bootstrap处理翻页的类. Class 描述 示例代 ...

  7. 697. Degree of an Array@python

    Given a non-empty array of non-negative integers nums, the degree of this array is defined as the ma ...

  8. iptables IP流量统计

    最后是使用ipset进行流量统计,iptaccount资料太少而且还跟网上说明的操作情况不相符,继续看源码分析组长老大都不高兴.ipset使用帮助 1. 创建ipset集合:ipset create ...

  9. RN安卓原生模块

    https://facebook.github.io/react-native/docs/native-modules-android.html RN实际就是依附在原生平台上,把各种各样的RN组件展示 ...

  10. js解析器

    1>js的预解析 找var function 参数等 所有的变量,在正式运行代码前,都提前赋了一个值:未定义 所有的函数,在正式运行代码前,都是整个函数块. 遇到重名的:只留一个 如果变量与函数 ...