【题目分析】

一堆小木棍,问取出三根能组成三角形的概率是多少。

Kuangbin的博客中讲的很详细。

构造一个多项式 ai=i的个数。

然后卷积之后去重。

统计也需要去重。

挺麻烦的一道题。

#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib> #include <map>
#include <set>
#include <queue>
#include <string>
#include <iostream>
#include <algorithm> using namespace std; #define maxn 500005
#define db double
#define ll long long
#define inf 0x3f3f3f3f
#define F(i,j,k) for (int i=j;i<=k;++i)
#define D(i,j,k) for (int i=j;i>=k;--i) void Finout()
{
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
// freopen("out.txt","w",stdout);
#endif
} int Getint()
{
int x=0,f=1; char ch=getchar();
while (ch<'0'||ch>'9') {if (ch=='-') f=-1; ch=getchar();}
while (ch>='0'&&ch<='9') {x=x*10+ch-'0'; ch=getchar();}
return x*f;
} struct Complex{
double x,y;
Complex operator + (Complex a) { Complex ret; ret.x=x+a.x; ret.y=y+a.y; return ret;};
Complex operator - (Complex a) { Complex ret; ret.x=x-a.x; ret.y=y-a.y; return ret;};
Complex operator * (Complex a) { Complex ret; ret.x=x*a.x-y*a.y; ret.y=x*a.y+y*a.x; return ret;};
}a[maxn]; ll rev[maxn],n,m,len,T,b[maxn],sum;
ll pre_sum[maxn],cnt;
const double pi=acos(-1.0); void FFT(Complex * x,int n,int f)
{
F(i,0,n-1) if (rev[i]>i) swap(x[rev[i]],x[i]);
for (int m=2;m<=n;m<<=1)
{
Complex wn;
wn.x=cos(2.0*pi/m*f); wn.y=sin(2.0*pi/m*f);
for (int i=0;i<n;i+=m)
{
Complex w;
w.x=1; w.y=0;
for (int j=0;j<(m>>1);++j)
{
Complex u=x[i+j],v=x[i+j+(m>>1)]*w;
x[i+j]=u+v; x[i+j+(m>>1)]=u-v;
w=w*wn;
}
}
}
} bool cmp(int a,int b){return a<b;} int main()
{
Finout();T=Getint();
while (T--)
{
memset(a,0,sizeof a);
cnt=0;
sum=n=Getint();
F(i,1,n) b[i]=Getint(),a[b[i]].x+=1;
sort(b+1,b+sum+1,cmp);
m=1,len=0;n=b[sum]*2+1;
while (m<=n) m<<=1,len++; n=m;
F(i,0,n-1)
{
int t=i,r=0;
F(j,1,len) r<<=1,r|=t&1,t>>=1;
rev[i]=r;
}
FFT(a,n,1); F(i,0,n-1) a[i]=a[i]*a[i];
FFT(a,n,-1);
F(i,0,n-1) a[i].x=a[i].x/n;
F(i,1,sum) a[b[i]<<1].x-=1;
F(i,0,n-1) a[i].x/=2;
pre_sum[0]=a[0].x+0.5;
F(i,1,n-1) pre_sum[i]=pre_sum[i-1]+a[i].x+0.5;
F(i,1,sum)
{
cnt+=pre_sum[n-1]-pre_sum[b[i]];
cnt-=(ll)(i-1)*(sum-i);
cnt-=(ll)(sum-1);
cnt-=(ll)(sum-i)*(sum-i-1)/2;
}
ll tot=(ll)sum*(sum-1)*(sum-2)/6;
printf("%.7f\n",(db)cnt/tot);
}
}

  

HDU 4609 3-idiots ——FFT的更多相关文章

  1. HDU 4609 3-idiots(FFT)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4609 题意:给出n个正整数(数组A).每次随机选出三个数.问这三个数能组成三角形的概率为多大? 思路: ...

  2. HDU 4609 3-idiots (组合数学 + FFT)

    题意:给定 n 条边,问随机选出 3 条边,能组成三角形的概率是多少. 析:答案很明显就是  能组成三角形的种数 / (C(n, 3)).现在的问题是怎么求能组成三角形的种数. 这个博客说的非常清楚了 ...

  3. HDU 4609 3-idiots ——(FFT)

    这是我接触的第一个关于FFT的题目,留个模板. 这题的题解见:http://www.cnblogs.com/kuangbin/archive/2013/07/24/3210565.html. FFT的 ...

  4. hdu 4609: 3-idiots (FFT)

    题目链接 题意:从N个数中,选出三个两两不同的数,求这三个数能够作为一个三角形的三边长的概率. 题解:用一个数组num[]记录大小为 i 的数出现的次数,通过 num[] 卷 num[] 得到 num ...

  5. 解题:HDU 4609 Three Idiots

    题面 要求组合的方法显然我们需要对桶卷积,即设$F(x)=\sum\limits_{i=1}^{maxx}x^{cnt[i]}$,然后我们初步的先把$F^2(x)$卷出来,表示选两条边.然后我们发现如 ...

  6. hdu 4609 3-idiots [fft 生成函数 计数]

    hdu 4609 3-idiots 题意: 给出\(A_i\),问随机选择一个三元子集,选择的数字构成三角形的三边长的概率. 一开始一直想直接做.... 先生成函数求选两个的方案(注意要减去两次选择同 ...

  7. 快速傅里叶变换应用之二 hdu 4609 3-idiots

    快速傅里叶变化有不同的应用场景,hdu4609就比较有意思.题目要求是给n个线段,随机从中选取三个,组成三角形的概率. 初始实在没发现这个怎么和FFT联系起来,后来看了下别人的题解才突然想起来:组合计 ...

  8. bzoj 3513: [MUTC2013]idiots FFT

    bzoj 3513: [MUTC2013]idiots FFT 链接 bzoj 思路 参考了学姐TRTTG的题解 统计合法方案,最后除以总方案. 合法方案要不好统计,统计不合法方案. \(a+b< ...

  9. hdu 4609 3-idiots <FFT>

    链接: http://acm.hdu.edu.cn/showproblem.php?pid=4609 题意: 给定 N 个正整数, 表示 N 条线段的长度, 问任取 3 条, 可以构成三角形的概率为多 ...

  10. HDU 4609 FFT模板

    http://acm.hdu.edu.cn/showproblem.php?pid=4609 题意:给你n个数,问任意取三边能够,构成三角形的概率为多少. 思路:使用FFT对所有长度的个数进行卷积(\ ...

随机推荐

  1. Selenium私房菜系列9 -- Selenium RC服务器命令行参数列表【ZZ】

    本文转载自:http://wiki.javascud.org/display/SEL/Selenium+Remote+Control+-+options 使用示例: java -jar seleniu ...

  2. 线程池 Threadlocal 使用注意

    线程池中的线程是重复使用的,即一次使用完后,会被重新放回线程池,可被重新分配使用. 因此,ThreadLocal线程变量,如果保存的信息只是针对一次请求的,放回线程池之前需要清空这些Threadloc ...

  3. Android(java)学习笔记142:Android中补间动画(Tween Animation)

    本文主要简单介绍补间动画使用代码实现, 关于使用xml实现补间动画, 可以参看:自定义控件三部曲之动画篇(一)——alpha.scale.translate.rotate.set的xml属性及用法 1 ...

  4. 树形dp——Tree2cycle

    一.问题描述(题目链接) 给你一棵树,删除或添加一条边的费用都是1,问使它变成一个环的最小费用. 二.解题思路 回溯法,然后回溯的时候的当前节点度数>2(如果是成环的话肯定就是2或者小于2)就把 ...

  5. Gradle环境下导出Swagger为PDF

    更多精彩博文,欢迎访问我的个人博客 说明 我个人是一直使用Swagger作为接口文档的说明的.但是由于在一些情况下,接口文档说明需要以文件的形式交付出去,如果再重新写一份文档难免有些麻烦.于是在网上看 ...

  6. 各种分布(distribution)

    正态分布(Normal distribution),又名高斯分布(Gaussian distribution).若随机变量X服从一个数学期望为μ.方差为σ^2(标准差为σ)的正态分布,记为N(μ,σ^ ...

  7. VM虚拟机下的Linux不能上网

    虚拟机linux上网配置 图解教程 首先查看window7主机下的网络配置VMNet1或VMNet8是否开启,其实linux系统的网络连接跟linux系统一致 在虚拟机界面将桥接改为NAT连接 点虚拟 ...

  8. struts2的动态方法配置

    动态方法调用配置 <package name="test" extends="struts-default"> <aciton name=&q ...

  9. Xcode及Mac快捷键

    1. 文件 CMD + N: 新文件CMD + SHIFT + N: 新项目CMD + O: 打开CMD + S: 保存CMD + SHIFT + S: 另存为CMD + W: 关闭窗口CMD + S ...

  10. CF547D Mike and Fish 建图

    题意: 有点长→CF547DMike and Fish. 分析: 其实也没什么好分析的,我这也是看的题解. (不过,那篇题解好像文字的代码不太对劲) 这里直接说做法,正确性自证: 对输入的,将横.纵坐 ...