UVa563_Crimewave(网络流/最大流)(小白书图论专题)
解题报告
思路:
要求抢劫银行的伙伴(想了N多名词来形容,强盗,贼匪,小偷,sad。都认为不合适)不在同一个路口相碰面,能够把点拆成两个点,一个入点。一个出点。
再设计源点s连向银行位置。再矩阵外围套上一圈。连向汇点t
矩阵内的点,出点和周围的点的出点相连。
#include <iostream>
#include <cstring>
#include <cstdio>
#include <queue>
#define M 500000
#define N 10000
#define inf 0x3f3f3f3f
using namespace std;
int n,m,h,w,head[N],pre[N],l[N],mmap[N][N],cnt,s,t;
struct node {
int v,w,next;
} edge[M];
int dx[]= {-1,0,1,0};
int dy[]= {0,1,0,-1};
void add(int u,int v,int w) {
edge[cnt].v=v;
edge[cnt].w=w;
edge[cnt].next=head[u];
head[u]=cnt++; edge[cnt].v=u;
edge[cnt].w=0;
edge[cnt].next=head[v];
head[v]=cnt++;
}
int bfs() {
memset(l,-1,sizeof(l));
l[s]=0;
int i,u,v;
queue<int >Q;
Q.push(s);
while(!Q.empty()) {
u=Q.front();
Q.pop();
for(i=head[u]; i!=-1; i=edge[i].next) {
v=edge[i].v;
if(l[v]==-1&&edge[i].w) {
l[v]=l[u]+1;
Q.push(v);
}
}
}
return l[t]>0;
}
int dfs(int u,int f) {
int a,flow=0;
if(u==t)return f;
for(int i=head[u]; i!=-1; i=edge[i].next) {
int v=edge[i].v;
if(l[v]==l[u]+1&&edge[i].w&&(a=dfs(v,min(f,edge[i].w)))) {
edge[i].w-=a;
edge[i^1].w+=a;
flow+=a;
f-=a;
if(!f)break;
}
}
if(!flow)l[u]=-1;
return flow;
}
int main() {
int i,j,T,k,x,y;
scanf("%d",&T);
while(T--) {
cnt=k=0;
memset(head,-1,sizeof(head));
scanf("%d%d%d",&h,&w,&m);
h+=2;
w+=2;
for(i=0; i<h; i++) {
for(j=0; j<w; j++) {
mmap[i][j]=++k;
}
}
s=0;
t=k*2+1;
for(i=1; i<h-1; i++) {
for(j=1; j<w-1; j++) {
add(mmap[i][j],mmap[i][j]+k,1);
for(int l=0; l<4; l++) {
int x=i+dx[l];
int y=j+dy[l];
if(x>=1&&x<h-1&&y>=1&&y<w-1)
add(mmap[i][j]+k,mmap[x][y],1);
}
}
}
for(i=1; i<w-1; i++) {
add(mmap[1][i]+k,mmap[0][i],1);
add(mmap[0][i],t,1);
add(mmap[h-2][i]+k,mmap[h-1][i],1);
add(mmap[h-1][i],t,1);
}
for(i=1; i<h-1; i++) {
add(mmap[i][1]+k,mmap[i][0],1);
add(mmap[i][0],t,1);
add(mmap[i][w-2]+k,mmap[i][w-1],1);
add(mmap[i][w-1],t,1);
}
for(i=0; i<m; i++) {
scanf("%d%d",&x,&y);
add(s,mmap[x][y],1);
}
int ans=0,a;
while(bfs())
while(a=dfs(s,inf))
ans+=a;
if(ans==m)
printf("possible\n");
else printf("not possible\n");
}
return 0;
}
Crimewave |
Nieuw Knollendam is a very modern town. This becomes clear already when looking at the layout of its map, which is just a rectangular grid of streets and avenues. Being an important trade centre, Nieuw Knollendam
also has a lot of banks. Almost on every crossing a bank is found (although there are never two banks at the same crossing). Unfortunately this has attracted a lot of criminals. Bank hold-ups are quite common, and often on one day several banks are robbed.
This has grown into a problem, not only to the banks, but to the criminals as well. After robbing a bank the robber tries to leave the town as soon as possible, most of the times chased at high speed by the police. Sometimes two running criminals pass the
same crossing, causing several risks: collisions, crowds of police at one place and a larger risk to be caught.
To prevent these unpleasant situations the robbers agreed to consult together. Every Saturday night they meet and make a schedule for the week to come: who is going to rob which bank on which day? For every day they try to plan the get-away routes, such that
no two routes use the same crossing. Sometimes they do not succeed in planning the routes according to this condition, although they believe that such a planning should exist.
Given a grid of and the crossings where the banks to be robbed are located, find out whether or not it is possible to plan a
get-away route from every robbed bank to the city-bounds, without using a crossing more than once.
Input
The first line of the input contains the number of problems p to be solved.
- The first line of every problem contains the number s of streets ( ), followed by the number a of avenues
(), followed by the number b ()
of banks to be robbed. - Then b lines follow, each containing the location of a bank in the form of two numbers x (the number of the street) andy (the number of the avenue). Evidently and .
Output
The output file consists of p lines. Each line contains the text possible or not
possible. If it is possible to plan non-crossing get-away routes, this line should contain the word: possible. If this is not possible, the line
should contain the words not possible.
Sample Input
2
6 6 10
4 1
3 2
4 2
5 2
3 4
4 4
5 4
3 6
4 6
5 6
5 5 5
3 2
2 3
3 3
4 3
3 4
Sample Output
possible
not possible
Miguel A. Revilla
1998-03-10
UVa563_Crimewave(网络流/最大流)(小白书图论专题)的更多相关文章
- UVa753/POJ1087_A Plug for UNIX(网络流最大流)(小白书图论专题)
解题报告 题意: n个插头m个设备k种转换器.求有多少设备无法插入. 思路: 定义源点和汇点,源点和设备相连,容量为1. 汇点和插头相连,容量也为1. 插头和设备相连,容量也为1. 可转换插头相连,容 ...
- UVa10099_The Tourist Guide(最短路/floyd)(小白书图论专题)
解题报告 题意: 有一个旅游团如今去出游玩,如今有n个城市,m条路.因为每一条路上面规定了最多可以通过的人数,如今想问这个旅游团人数已知的情况下最少须要运送几趟 思路: 求出发点到终点全部路其中最小值 ...
- UVa567_Risk(最短路)(小白书图论专题)
解题报告 option=com_onlinejudge&Itemid=8&category=7&page=show_problem&problem=508"& ...
- UVa10048_Audiophobia(最短路/floyd)(小白书图论专题)
解题报告 题意: 求全部路中最大分贝最小的路. 思路: 类似floyd算法的思想.u->v能够有另外一点k.通过u->k->v来走,拿u->k和k->v的最大值和u-&g ...
- UVa10397_Connect the Campus(最小生成树)(小白书图论专题)
解题报告 题目传送门 题意: 使得学校网络互通的最小花费,一些楼的线路已经有了. 思路: 存在的线路当然全都利用那样花费肯定最小,把存在的线路当成花费0,求最小生成树 #include <ios ...
- UVa409_Excuses, Excuses!(小白书字符串专题)
解题报告 题意: 找包括单词最多的串.有多个按顺序输出 思路: 字典树爆. #include <cstdio> #include <cstring> #include < ...
- (通俗易懂小白入门)网络流最大流——EK算法
网络流 网络流是模仿水流解决生活中类似问题的一种方法策略,来看这么一个问题,有一个自来水厂S,它要向目标T提供水量,从S出发有不确定数量和方向的水管,它可能直接到达T或者经过更多的节点的中转,目前确定 ...
- 正睿OI国庆DAY2:图论专题
正睿OI国庆DAY2:图论专题 dfs/例题 判断无向图之间是否存在至少三条点不相交的简单路径 一个想法是最大流(后来说可以做,但是是多项式时间做法 旁边GavinZheng神仙在谈最小生成树 陈主力 ...
- POJ 1459-Power Network(网络流-最大流-ISAP)C++
Power Network 时间限制: 1 Sec 内存限制: 128 MB 题目描述 A power network consists of nodes (power stations, cons ...
随机推荐
- 【转载】 python sort、sorted高级排序技巧
这篇文章主要介绍了python sort.sorted高级排序技巧,本文讲解了基础排序.升序和降序.排序的稳定性和复杂排序.cmp函数排序法等内容,需要的朋友可以参考下 Python list内置so ...
- POJ_3565_Ants
题意:给出N个白点和N个黑点,要求用N条不相交的线段把它们连接起来,其中每条线段恰好连接一个白点和一个黑点,每个点恰好连接到一条线段. 分析:因为有结点黑白两色,我们不难想到构造一个二分图,其中每个白 ...
- Linux文件排序和FASTA文件操作
文件排序 seq: 产生一系列的数字; man seq查看其具体使用.我们这使用seq产生下游分析所用到的输入文件. # 产生从1到10的数,步长为1 $ seq 1 10 1 2 3 4 5 6 7 ...
- tp系统常量
ThinkPHP的公共入口文件里定义了系统常量 RUNTIME_PATH----系统运行时目录 LIB_PATH-----------系统核心类库目录 CORE_PATH--------Think类库 ...
- 05JavaScript中的事件处理
JavaScript中的事件处理 在JavaScript中,事件的发生主要是由窗口中内容变化.键盘和鼠标引起的.JavaScript在某些事件发生的时候,可以通过一些相应的事件处理器来捕获这些事件,并 ...
- oracle 备份/恢复
oracle备份是为了有问题能够快速恢复:
- HDU6189 Law of Commutation (数论)
题意:输入n和a 定义m等于2的n次方 求1-m有多少数使得 a^b = b^a (mod m) 题解:先打表找规律 发现a为奇数的答案只有b = a这一种 (不知道为什么也不想知道为什么 当a为偶数 ...
- for循环,isinstance() 函数
#isinstance()的运用 #练习: 求值总和以及平均值. str_list = [1,2,3,4,5,6,'a',7,8,9,'b',10,'c'] my_tal = 0 my_var = 0 ...
- 洛谷——P1379 八数码难题
P1379 八数码难题 双向BFS 原来双向BFS是这样的:终止状态与起始状态同时入队,进行搜索,只不过状态标记不一样而已,本题状态使用map来存储 #include<iostream> ...
- Daydreaming Stockbroker(2016 NCPC 贪心)
题目: Gina Reed, the famous stockbroker, is having a slow day at work, and between rounds of solitaire ...