HDOJ 5383 Yu-Gi-Oh! 最大费用最大流
网络流裸题:
分两部分建图,求不要求满流的最大费用最大流.....
Yu-Gi-Oh!
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 401 Accepted Submission(s): 108
Stilwell has n monsters
on the desk, each monster has its leveli and ATKi.
There are two kinds of monsters, Tuner monsters and Non-Tuner monsters.
Now, Stilwell plans to finish some "Synchro Summon", and "Synchro Summon" is a kind of special summon following these rules (a little different from the standard YGO rules):
(1) A "Synchro Summon" needs two monsters as the material of this summon, and they must be one Tuner monster and one Non-Tuner monster.
In other words, we can cost one Tuner monster and one Non-Tuner monster to get a Synchro monster ("cost" means remove form the desk, "get" means put on to the desk).
(2) To simplify this problem, Synchro monsters are neither Tuner monsters nor Non-Tuner monsters.
(3) The level sum of two material must be equal to the level of Synchro monster we summon.
For example:
A Level 3 Tuner monster + A
Level 2 Non-Tuner monster = A
Level 5 Synchro Monster
A Level 2 Tuner monster + A
Level 4 Non-Tuner monster = A
Level 6 Synchro Monster
A Level 4 Tuner monster + A
Level 4 Non-Tuner monster = A
Level 8 Synchro Monster
(4) The material of some Synchro monster has some limits, the material must contain some specific monster.
For example:
A Level 5 Synchro Monster α requires
A Level 3 Tuner monster α to
be its material
A Level 6 Synchro Monster β requires
A Level 4 Non-Tuner monster β to
be its material
A Level 8 Synchro Monster γ requires
A Level 4 Tuner monster γ + A
Level 4 Non-Tuner monster γ to
be its material
A Level 5 Synchro Monster φ doesn't
require any monsters to be its material
Then
A Level 3 Tuner monster α + A
Level 2 Non-Tuner monster = A
Level 5 Synchro Monster α
A Level 3 Tuner monster δ + A
Level 2 Non-Tuner monster ≠ A
Level 5 Synchro Monster α
A Level 2 Tuner monster + A
Level 4 Non-Tuner monster β = A
Level 6 Synchro Monster β
A Level 3 Tuner monster + A
Level 3 Non-Tuner monster ζ ≠ A
Level 6 Synchro Monster β
A Level 4 Tuner monster γ + A
Level 4 Non-Tuner monster γ = A
Level 8 Synchro Monster γ
A Level 4 Tuner monster σ + A
Level 4 Non-Tuner monster γ ≠ A
Level 8 Synchro Monster γ
A Level 4 Tuner monster γ + A
Level 4 Non-Tuner monster ϕ ≠ A
Level 8 Synchro Monster γ
A Level 3 Tuner monster + A
Level 2 Non-Tuner monster = A
Level 5 Synchro Monster φ
A Level 3 Tuner monster α + A
Level 2 Non-Tuner monster = A
Level 5 Synchro Monster φ
Stilwell has m kinds
of Synchro Monster cards, the quantity of each Synchro Monster cards is infinity.
Now, given leveli and ATKi of
every card on desk and every kind of Synchro Monster cards. Please finish some Synchro Summons (maybe zero) to maximum ∑ATKi of
the cards on desk.
the number of test cases.
For each test case, the first line contains two integers n, m.
Next n lines,
each line contains three integers tuneri, leveli,
and ATKi,
describe a monster on the desk. If this monster is a Tuner monster, then tuneri=1,
else tuneri=0 for
Non-Tuner monster.
Next m lines,
each line contains integers levelj, ATKj, rj,
and following rj integers
are the required material of this Synchro Monster (the integers given are the identifier of the required material).
The input data guarantees that the required material list is available, two Tuner monsters or two Non-Tuner monsters won't be required. If ri=2 the
level sum of two required material will be equal to the level of Synchro Monster.
T≤10, n,m≤300, 1≤leveli≤12, 0≤ATKi≤5000, 0≤ri≤2
find the maximum ∑ATKi after
some Synchro Summons.
5
2 2
1 3 1300
0 2 900
5 2300 1 1
8 2500 0
2 1
1 3 1300
1 2 900
5 2300 1 1
3 1
1 3 1300
0 2 900
0 2 800
5 2300 1 1
3 1
1 1 233
0 1 233
0 1 200
2 466 2 1 2
6 3
1 3 1300
0 2 900
0 5 1350
1 4 1800
0 10 4000
0 10 1237
5 2300 1 1
8 3000 0
6 2800 0
2300
2200
3200
666
11037
/* ***********************************************
Author :CKboss
Created Time :2015年08月17日 星期一 08时42分00秒
File Name :HDOJ5383.cpp
************************************************ */ #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <string>
#include <cmath>
#include <cstdlib>
#include <vector>
#include <queue>
#include <set>
#include <map> using namespace std; const int INF=0x3f3f3f3f;
const int maxv=400;
const int maxn=maxv*maxv; struct Edge
{
int to,next,cap,flow,cost;
}edge[maxn]; int n,m;
int Adj[maxv],Size,N; void init()
{
memset(Adj,-1,sizeof(Adj)); Size=0;
} void addedge(int u,int v,int cap,int cost)
{
edge[Size].to=v;
edge[Size].next=Adj[u];
edge[Size].cost=cost;
edge[Size].cap=cap;
edge[Size].flow=0;
Adj[u]=Size++;
} void Add_Edge(int u,int v,int cap,int cost)
{
addedge(u,v,cap,cost);
addedge(v,u,0,-cost);
} int dist[maxv];
int vis[maxv],pre[maxv]; bool spfa(int s,int t)
{
queue<int> q;
for(int i=0;i<N;i++)
{
dist[i]=-INF; vis[i]=false; pre[i]=-1;
}
dist[s]=0; vis[s]=true; q.push(s);
while(!q.empty())
{
int u=q.front();
q.pop();
vis[u]=false;
for(int i=Adj[u];~i;i=edge[i].next)
{
int v=edge[i].to;
if(edge[i].cap>edge[i].flow&&
dist[v]<dist[u]+edge[i].cost)
{
dist[v]=dist[u]+edge[i].cost;
pre[v]=i;
if(!vis[v])
{
vis[v]=true;
q.push(v);
}
}
}
}
if(pre[t]==-1) return false;
return true;
} int MinCostMaxFlow(int s,int t,int &cost)
{
int flow=0;
cost=0;
while(spfa(s,t))
{
int Min=INF;
for(int i=pre[t];~i;i=pre[edge[i^1].to])
{
if(Min>edge[i].cap-edge[i].flow)
Min=edge[i].cap-edge[i].flow;
}
if(dist[t]<0) break;
for(int i=pre[t];~i;i=pre[edge[i^1].to])
{
edge[i].flow+=Min;
edge[i^1].flow-=Min;
cost+=edge[i].cost*Min;
}
flow+=Min;
}
return flow;
} struct Moster
{
Moster(){}
Moster(int l,int a):level(l),ATK(a){}
int level,ATK;
}; vector<Moster> m0,m1;
int turn[maxv],pos[maxv];
int GG[maxv][maxv]; int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout); int T_T;
scanf("%d",&T_T);
while(T_T--)
{
scanf("%d%d",&n,&m);
init(); m0.clear(); m1.clear();
memset(GG,0,sizeof(GG));
int sumATK=0;
int sz1=0,sz2=0;
for(int i=0,t,l,a;i<n;i++)
{
scanf("%d%d%d",&t,&l,&a);
if(t==0)
{
m0.push_back(Moster(l,a));
turn[i]=0; pos[i]=sz1++;
}
else if(t==1)
{
m1.push_back(Moster(l,a));
turn[i]=1; pos[i]=sz2++;
}
sumATK+=a;
}
for(int i=0,l,a,r;i<m;i++)
{
scanf("%d%d%d",&l,&a,&r);
if(r==0)
{
for(int j=0;j<sz1;j++)
{
for(int k=0;k<sz2;k++)
{
int u=j+1,v=k+sz1+1;
if(m0[j].level+m1[k].level==l)
{
if(a>m0[j].ATK+m1[k].ATK)
{
GG[u][v]=max(GG[u][v],a-m0[j].ATK-m1[k].ATK);
}
}
}
}
}
else if(r==1)
{
int x;
scanf("%d",&x); x--;
if(turn[x]==0)
{
int P=pos[x];
for(int j=0;j<sz2;j++)
{
int u=P+1,v=j+sz1+1;
if(m0[P].level+m1[j].level==l)
{
if(a>m0[P].ATK+m1[j].ATK)
{
GG[u][v]=max(GG[u][v],a-m0[P].ATK-m1[j].ATK);
}
}
}
}
else if(turn[x]==1)
{
int P=pos[x];
for(int j=0;j<sz1;j++)
{
int u=j+1,v=P+sz1+1;
if(m0[j].level+m1[P].level==l)
{
if(a>m0[j].ATK+m1[P].ATK)
{
GG[u][v]=max(GG[u][v],a-m0[j].ATK-m1[P].ATK);
}
}
}
}
}
else if(r==2)
{
int x,y;
scanf("%d%d",&x,&y); x--; y--;
if(turn[x]==1) swap(x,y);
int u=pos[x]+1,v=sz1+pos[y]+1;
if(a>m0[pos[x]].ATK+m1[pos[y]].ATK)
{
GG[u][v]=max(GG[u][v],a-m0[pos[x]].ATK-m1[pos[y]].ATK);
}
}
} for(int i=1;i<=sz1;i++)
{
for(int j=sz1+1;j<=sz1+sz2;j++)
{
if(GG[i][j]>0) Add_Edge(i,j,1,GG[i][j]);
}
} int S=0,T=sz1+sz2+1;
for(int i=1;i<=sz1;i++) Add_Edge(0,i,1,0);
for(int i=sz1+1;i<=sz1+sz2;i++) Add_Edge(i,T,1,0); int flow,cost; N=sz1+sz2+2;
flow=MinCostMaxFlow(S,T,cost);
printf("%d\n",sumATK+cost);
} return 0;
}
HDOJ 5383 Yu-Gi-Oh! 最大费用最大流的更多相关文章
- hdoj 1533 Going Home 【最小费用最大流】【KM入门题】
Going Home Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Tota ...
- Matrix Again(最大费用最大流)
Matrix Again Time Limit: 5000/2000 MS (Java/Others) Memory Limit: 102400/102400 K (Java/Others) Tota ...
- HDU3376 最小费用最大流 模板2
Matrix Again Time Limit: 5000/2000 MS (Java/Others) Memory Limit: 102400/102400 K (Java/Others)To ...
- [板子]最小费用最大流(Dijkstra增广)
最小费用最大流板子,没有压行.利用重标号让边权非负,用Dijkstra进行增广,在理论和实际上都比SPFA增广快得多.教程略去.转载请随意. #include <cstdio> #incl ...
- bzoj1927最小费用最大流
其实本来打算做最小费用最大流的题目前先来点模板题的,,,结果看到这道题二话不说(之前打太多了)敲了一个dinic,快写完了发现不对 我当时就这表情→ =_=你TM逗我 刚要删突然感觉dinic的模 ...
- 【Codeforces717G】Underfail Hash + 最大费用最大流
G. Underfail time limit per test:1 second memory limit per test:256 megabytes input:standard input o ...
- ACM/ICPC 之 卡卡的矩阵旅行-最小费用最大流(可做模板)(POJ3422)
将每个点拆分成原点A与伪点B,A->B有两条单向路(邻接表实现时需要建立一条反向的空边,并保证环路费用和为0),一条残留容量为1,费用为本身的负值(便于计算最短路),另一条残留容量+∞,费用为0 ...
- HDU5900 QSC and Master(区间DP + 最小费用最大流)
题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5900 Description Every school has some legends, ...
- P3381 【模板】最小费用最大流
P3381 [模板]最小费用最大流 题目描述 如题,给出一个网络图,以及其源点和汇点,每条边已知其最大流量和单位流量费用,求出其网络最大流和在最大流情况下的最小费用. 输入输出格式 输入格式: 第一行 ...
随机推荐
- Java多线程——线程之间的协作
Java多线程——线程之间的协作 摘要:本文主要学习多线程之间是如何协作的,以及如何使用wait()方法与notify()/notifyAll()方法. 部分内容来自以下博客: https://www ...
- Probabilistic locking in SQLite
In SQLite, a reader/writer lock mechanism is required to control the multi-process concurrent access ...
- CAD在网页中绘图,并为新绘的对象写扩展数据和读取扩展数据
在网页中绘图,并为新绘的对象写扩展数据和读取扩展数据.下面帮助的完整例子,在控件安装目录的 Sample\Ie\iedemo.htm 中. 主要用到函数说明: _DMxDrawX::InsertBlo ...
- string 字符串--------redis
APPEND 语法:APPEND KEY VALUE 如果key已经存在并且是一个字符串,append 命令将value追加到key原来的值的末尾. 如果key不存在,append就简单地将给定key ...
- A3. JVM 类加载器
[概述] 虚拟机设计团队把类加载阶段中的 “通过一个类的全限定名来获取描述此类的二进制字节流” 这个动作放到 Java 虚拟机外部去实现,以便让应用程序自己决定如何去获取所需要的类.实现这个动作的代码 ...
- LTTng
Waiting for dig... http://frederic-wou.net/lttng/
- CCF201703-2 学生排队 java(100分)
试题编号: 201703-2 试题名称: 学生排队 时间限制: 1.0s 内存限制: 256.0MB 问题描述: 问题描述 体育老师小明要将自己班上的学生按顺序排队.他首先让学生按学号从小到大的顺序排 ...
- pandas 处理 excel
先写下来,以免后续忘记,有很多都是之前用过的, 依旧忘!!! 嘤嘤嘤 data_file = pandas.read_excel('/imporExcel/2017_7_7.xlsx',sep = ' ...
- textbook references
* math 1. Teubner-Taschenbuch der Mathematik * CFD
- 08.C语言:特殊函数
C语言:特殊函数 1.递归函数: 与普通函数比较,执行过程不同,该函数内部调用它自己,它的执行必须要经过两个阶段:递推阶段,回归阶段: 当不满足回归条件,不再递推: #include <stdi ...