[题目链接]

https://www.lydsy.com/JudgeOnline/problem.php?id=5139

[算法]

二分答案

时间复杂度 : O(NlogN^2)

[代码]

#include<bits/stdc++.h>
using namespace std;
const int MAXN = 1e5 + ; int n;
int a[MAXN] , b[MAXN]; template <typename T> inline void chkmax(T &x,T y) { x = max(x,y); }
template <typename T> inline void chkmin(T &x,T y) { x = min(x,y); }
template <typename T> inline void read(T &x)
{
T f = ; x = ;
char c = getchar();
for (; !isdigit(c); c = getchar()) if (c == '-') f = -f;
for (; isdigit(c); c = getchar()) x = (x << ) + (x << ) + c - '';
x *= f;
}
inline bool check(int x)
{
for (int i = ; i < x; i++) b[i] = a[i];
sort(b + ,b + x);
int limit = n - x;
for (int i = ; i < x; i++)
{
if (b[i] > limit) return false;
++limit;
}
return true;
} int main()
{ read(n);
for (int i = ; i <= n; i++) read(a[i]);
int l = , r = n , ans = ;
while (l <= r)
{
int mid = (l + r) >> ;
if (check(mid))
{
l = mid + ;
ans = mid;
} else r = mid - ;
}
printf("%d\n",n - ans); return ; }

[USACO 2017DEC] Greedy Gift Takers的更多相关文章

  1. NC24083 [USACO 2017 Dec P]Greedy Gift Takers

    NC24083 [USACO 2017 Dec P]Greedy Gift Takers 题目 题目描述 Farmer John's nemesis, Farmer Nhoj, has N cows ...

  2. [BZOJ5139][Usaco2017 Dec]Greedy Gift Takers 权值线段树

    Description Farmer John's nemesis, Farmer Nhoj, has NN cows (1≤N≤10^5), conveniently numbered 1…N. T ...

  3. [USACO17DEC]Greedy Gift Takers

    题目描述 Farmer John's nemesis, Farmer Nhoj, has NN cows (1 \leq N \leq 10^51≤N≤105 ), conveniently numb ...

  4. P4090 [USACO17DEC]Greedy Gift Takers

    题目链接 题意分析 首先 如果当前序列中一头奶牛拿不到礼物的话 那么他后面的奶牛也拿不到礼物 所以我们可以二分 由于可以操作无限次 所以我们对于当前\([1,mid)\)的奶牛按照\(c\)值排序之后 ...

  5. USACO Training Section 1.1 贪婪的送礼者Greedy Gift Givers

    P1201 [USACO1.1]贪婪的送礼者Greedy Gift Givers 题目描述 对于一群(NP个)要互送礼物的朋友,GY要确定每个人送出的钱比收到的多多少.在这一个问题中,每个人都准备了一 ...

  6. Java实现【USACO】1.1.2 贪婪的礼物送礼者 Greedy Gift Givers

    [USACO]1.1.2 贪婪的礼物送礼者 Greedy Gift Givers 题目描述 对于一群要互送礼物的朋友,你要确定每个人送出的礼物比收到的多多少(and vice versa for th ...

  7. USACO . Greedy Gift Givers

    Greedy Gift Givers A group of NP (2 ≤ NP ≤ 10) uniquely named friends has decided to exchange gifts ...

  8. USACO Section 1.1-2 Greedy Gift Givers

    Greedy Gift Givers 贪婪的送礼者 对于一群(NP个)要互送礼物的朋友,GY要确定每个人送出的钱比收到的多多少. 在这一个问题中,每个人都准备了一些钱来送礼物,而这些钱将会被平均分给那 ...

  9. usaco training <1.2 Greedy Gift Givers>

    题面 Task 'gift1': Greedy Gift Givers A group of NP (2 ≤ NP ≤ 10) uniquely named friends has decided t ...

随机推荐

  1. 2016阿里校招python研发面试

    一面: 面:说说你们学校的主修课程. 学校开的全是尼玛java课,这个我是想了有一会的. 面:看你简历写了会jquery,来问你个简单的jquery问题 :jQuery支不支持css引入. 呵呵 面: ...

  2. hdu 3879 最大密集子图(点和边均带权)(模板)

    /* 最大权闭合图,可以用最大密集子图来解速度更快复杂度低 题解:胡伯涛<最小割模型在信息学竞赛中的应用> 点和边均带权的最大密集子图 s-i,权为U=点权绝对值和+边的所有权值 i-t, ...

  3. try catch finally执行顺序 (return / 变量覆盖)

    finally有return 始终返回finally中的return 抛弃 try 与catch中的return 情况1:try{} catch(){}finally{} return x; try{ ...

  4. spring/spring boot/spring mvc中用到的注解

    在spring Boot中几乎可以完全弃用xml配置文件,本文的主题是分析常用的注解. Spring最开始是为了解决EJB等大型企业框架对应用程序的侵入性,因此大量依靠配置文件来“非侵入式”得给POJ ...

  5. jenkins修改日志级别方法

    1.jenkins日志有时候也会消耗掉很大内存,在传输时也会消耗掉大量带宽,如图,300+M的日志大小,太夸张了吧 2.修改日志级别的方法: 在配置文件里修改,重启后永久生效,配置路径:/etc/sy ...

  6. 《javascript设计模式》读书笔记二(封装和隐藏信息)

    1.为什么要封装和信息隐藏 做过编程的朋友们知道"耦合"这个词.事实上封装的效果就是为了解耦,让类和类之间没有太多的联系,防止某一天改动某一类的时候,产生"多米骨诺牌效应 ...

  7. Reload file in vim

    68down voteaccepted Give this a try: :e From :h :e: Edit the current file. This is useful to re-edit ...

  8. Oracle APEX 4.2安装和配置

    A standard Oracle 11.2.0.3 database installation comes bundled with Application Express (APEX) 3.2.1 ...

  9. 编译iOS使用的.a库文件

    首先是须要编译成.a的源文件 hello.h: #ifndef __INCLUDE_HELLO_H__ #define __INCLUDE_HELLO_H__ void hello(const cha ...

  10. ldd

    ldd命令用于判断某个可执行的 binary 档案含有什么动态函式库 [diego@localhost ~/work/branch_dispatch_201511/rtqa_center/source ...