BZOJ_2434_[Noi2011]阿狸的打字机_AC自动机+出栈入栈序+树状数组

Description

阿狸喜欢收藏各种稀奇古怪的东西,最近他淘到一台老式的打字机。打字机上只有28个按键,分别印有26个小写英文字母和'B'、'P'两个字母。

经阿狸研究发现,这个打字机是这样工作的:

l 输入小写字母,打字机的一个凹槽中会加入这个字母(这个字母加在凹槽的最后)。

l 按一下印有'B'的按键,打字机凹槽中最后一个字母会消失。

l 按一下印有'P'的按键,打字机会在纸上打印出凹槽中现有的所有字母并换行,但凹槽中的字母不会消失。

例如,阿狸输入aPaPBbP,纸上被打印的字符如下:

a

aa

ab

我们把纸上打印出来的字符串从1开始顺序编号,一直到n。打字机有一个非常有趣的功能,在打字机中暗藏一个带数字的小键盘,在小键盘上输入两个数(x,y)(其中1≤x,y≤n),打字机会显示第x个打印的字符串在第y个打印的字符串中出现了多少次。

阿狸发现了这个功能以后很兴奋,他想写个程序完成同样的功能,你能帮助他么?

Input

输入的第一行包含一个字符串,按阿狸的输入顺序给出所有阿狸输入的字符。

第二行包含一个整数m,表示询问个数。

接下来m行描述所有由小键盘输入的询问。其中第i行包含两个整数x, y,表示第i个询问为(x, y)。

Output

输出m行,其中第i行包含一个整数,表示第i个询问的答案。

Sample Input

aPaPBbP
3
1 2
1 3
2 3

Sample Output

2
1
0

HINT

1<=N<=10^5

1<=M<=10^5
输入总长<=10^5

可以发现那个字符串相当于建立了一棵Trie树。
x在y中出现的次数等价于有多少个y串上的结点能通过fail指针走若干次能够到达x的终止节点。
也即x的终止节点在fail树上的子树中有多少个在y串上的结点。
于是我们需要处理“到子树路径加”“子树求和”。
先把fail树建出出栈入栈序,然后查询挂链,把x挂到y上,用给出的字符串遍历这颗Trie树。
向儿子走时入栈位置+1,向父亲走时出栈位置-1,打印的时候处理询问,对应子树区间为入栈到出栈这一段区间。
 
代码:
#include <cstdio>
#include <string.h>
#include <algorithm>
using namespace std;
#define N 100050
struct Query {
int head[N],to[N],nxt[N],cnt,val[N];
inline void add(int u,int v,int w) {
to[++cnt]=v; nxt[cnt]=head[u]; head[u]=cnt; val[cnt]=w;
}
}A;
struct Fail_Tree {
int head[N],to[N],nxt[N],cnt;
inline void add(int u,int v) {
to[++cnt]=v; nxt[cnt]=head[u]; head[u]=cnt;
}
}B;
int ch[N][26],fail[N],Q[N],l,r,m,cnt=1,siz[N],fa[N],dfn[N],son[N],c[N<<1],ans[N],flg[N];
char w[N];
void build() {
int i,p;
for(i=0;i<26;i++) ch[0][i]=1;
Q[r++]=1;
while(l<r) {
p=Q[l++];
for(i=0;i<26;i++) {
if(ch[p][i]) fail[ch[p][i]]=ch[fail[p]][i],Q[r++]=ch[p][i];
else ch[p][i]=ch[fail[p]][i];
}
}
}
void dfs(int x) {
int i;dfn[x]=++dfn[0];
for(i=B.head[x];i;i=B.nxt[i]) {
dfs(B.to[i]);
}
son[x]=++dfn[0];
}
void fix(int x,int v) {for(;x<=dfn[0];x+=x&(-x)) c[x]+=v;}
int inq(int x) {int re=0;for(;x;x-=x&(-x)) re+=c[x]; return re;}
void solve() {
int i,p=1,j;
for(i=1;w[i];i++) {
if(w[i]=='B') {
fix(son[p],-1);
p=fa[p];
}else if(w[i]=='P') {
for(j=A.head[p];j;j=A.nxt[j]) {
// printf("%d\n",A.val[j]);
ans[A.val[j]]=inq(son[A.to[j]])-inq(dfn[A.to[j]]-1);
}
}else {
p=ch[p][w[i]-'a'];
fix(dfn[p],1);
}
}
}
int main() {
scanf("%s%d",w+1,&m);
int i,p=1,x,y;
int bajisbdbdbioabsd=0;
for(i=1;w[i];i++) {
if(w[i]=='B') {
p=fa[p];
}else if(w[i]=='P') {
siz[p]++;
flg[++bajisbdbdbioabsd]=p;
}else {
int &k=ch[p][w[i]-'a'];
if(!k) k=++cnt; fa[k]=p; p=k;
}
}
build();
for(i=1;i<=cnt;i++) B.add(fail[i],i);
dfs(1);
// printf("%d\n",B.cnt);puts("FUCK");
// for(i=1;i<=cnt;i++) printf("%d %d\n",dfn[i],son[i]);
for(i=1;i<=m;i++) scanf("%d%d",&x,&y),A.add(flg[y],flg[x],i);
solve();
for(i=1;i<=m;i++) printf("%d\n",ans[i]);
}

BZOJ_2434_[Noi2011]阿狸的打字机_AC自动机+出栈入栈序+树状数组的更多相关文章

  1. BZOJ 2434: [Noi2011]阿狸的打字机( AC自动机 + DFS序 + 树状数组 )

    一个串a在b中出现, 那么a是b的某些前缀的后缀, 所以搞出AC自动机, 按fail反向建树, 然后查询(x, y)就是y的子树中有多少是x的前缀. 离线, 对AC自动机DFS一遍, 用dfs序+树状 ...

  2. BZOJ2434: [Noi2011]阿狸的打字机(AC自动机 树状数组)

    Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 4140  Solved: 2276[Submit][Status][Discuss] Descript ...

  3. NOI 2011 阿狸的打字机 (AC自动机+dfs序+树状数组)

    题目大意:略(太长了不好描述) 良心LOJ传送门 先对所有被打印的字符串建一颗Trie树 观察数据范围,并不能每次打印都从头到尾暴力建树,而是每遍历到一个字符就在Trie上插入这个字符,然后记录每次打 ...

  4. 【bzoj3881】[Coci2015]Divljak AC自动机+树链的并+DFS序+树状数组

    题目描述 Alice有n个字符串S_1,S_2...S_n,Bob有一个字符串集合T,一开始集合是空的. 接下来会发生q个操作,操作有两种形式: “1 P”,Bob往自己的集合里添加了一个字符串P. ...

  5. 【loj6041】「雅礼集训 2017 Day7」事情的相似度 后缀自动机+STL-set+启发式合并+离线+扫描线+树状数组

    题目描述 给你一个长度为 $n$ 的01串,$m$ 次询问,每次询问给出 $l$ .$r$ ,求从 $[l,r]$ 中选出两个不同的前缀的最长公共后缀长度的最大值. $n,m\le 10^5$ 题解 ...

  6. BZOJ_3881_[Coci2015]Divljak_AC自动机+dfs序+树状数组

    BZOJ_3881_[Coci2015]Divljak_AC自动机+dfs序+树状数组 Description Alice有n个字符串S_1,S_2...S_n,Bob有一个字符串集合T,一开始集合是 ...

  7. BZOJ_2434_[NOI2011]_阿狸的打字机_(AC自动机+dfs序+树状数组)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=2434 给出\(n\)个字符串,\(m\)个询问,对于第\(i\)个询问,求第\(x_i\)个字 ...

  8. BZOJ 2434: [Noi2011]阿狸的打字机 [AC自动机 Fail树 树状数组 DFS序]

    2434: [Noi2011]阿狸的打字机 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 2545  Solved: 1419[Submit][Sta ...

  9. 【BZOJ2434】[NOI2011]阿狸的打字机 AC自动机+DFS序+树状数组

    [BZOJ2434][NOI2011]阿狸的打字机 Description 阿狸喜欢收藏各种稀奇古怪的东西,最近他淘到一台老式的打字机.打字机上只有28个按键,分别印有26个小写英文字母和'B'.'P ...

随机推荐

  1. PTA 04-树4 是否同一棵二叉搜索树 (25分)

    题目地址 https://pta.patest.cn/pta/test/15/exam/4/question/712 5-4 是否同一棵二叉搜索树   (25分) 给定一个插入序列就可以唯一确定一棵二 ...

  2. [luoguP1360] [USACO07MAR]黄金阵容均衡Gold Balanced L…

    传送门 真的骚的一个题,看了半天只会个前缀和+暴力.. 纯考思维.. 良心题解 #include <cstdio> #include <cstring> #include &l ...

  3. [luoguP1666] 前缀单词(DP)

    传送门 先把所有字符串按照字典序排序一下 会发现有字符串x和y(x再y前面,即字典序小),如果x不是y的前缀,那么在x前面不是x前缀的字符串也不是y的前缀 这样就可以DP了 f[i][j]表示前i个字 ...

  4. bzoj4027 [HEOI2015]兔子与樱花 树上贪心

    [HEOI2015]兔子与樱花 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1320  Solved: 762[Submit][Status][Di ...

  5. [NOIP2001] 提高组 洛谷P1024 一元三次方程求解

    题目描述 有形如:ax3+bx2+cx+d=0 这样的一个一元三次方程.给出该方程中各项的系数(a,b,c,d 均为实数),并约定该方程存在三个不同实根(根的范围在-100至100之间),且根与根之差 ...

  6. tiles

    参考博客:https://blog.csdn.net/aosica321/article/details/68948915 https://blog.csdn.net/it_faquir/articl ...

  7. 利用Cufon技术渲染文字的简单示例

    Cufon是一种能够根据指定的字体渲染文字的技术.今天试用了下,主要有几个步骤: 1.下载Cufon.js(http://cufon.shoqolate.com/generate/) 2.获取需要渲染 ...

  8. 分享一下然让显卡满血复活的小技巧(GTX)

    分享一下然让显卡满血复活的小技巧 笔者在玩大型游戏卡顿15fps下载如下操作 GTX950玩大型游戏都不会卡帧率稳定在30fps 下载GeForce Experience下载更新最新驱动 下载如下程序 ...

  9. 你创建线程池最好分为两种线程池,io密集型线程池,或者cpu密集型线程池

    你创建线程池最好分为两种线程池,io密集型线程池,或者cpu密集型线程池. 否则,如果只用一个线程池的话,不管是iO密集的线程,或者cpu消耗大的都放在同一个线程池的话,会发生线程池被撑满的情况

  10. Excel小tips - 如何设置表格输入数字后末尾自动添加%

    选中一列——鼠标右键——设置单元格格式——数字——自定义——0% 按照以上操作完成后,点击确定,就大功告成了.