Most Powerful


Time Limit: 2 Seconds      Memory Limit: 65536 KB

Recently, researchers on Mars have discovered N powerful atoms. All of them are different. These atoms have some properties. When two of these atoms collide, one of them disappears and a lot of power is produced. Researchers know the way every two atoms perform when collided and the power every two atoms can produce.

You are to write a program to make it most powerful, which means that the sum of power produced during all the collides is maximal.

Input

There are multiple cases. The first line of each case has an integer N (2 <= N <= 10), which means there are N atoms: A1, A2, ... , AN. Then N lines follow. There are N integers in each line. The j-th integer on the i-th line is the power produced when Ai and Aj collide with Aj gone. All integers are positive and not larger than 10000.

The last case is followed by a 0 in one line.

There will be no more than 500 cases including no more than 50 large cases that N is 10.

Output

Output the maximal power these N atoms can produce in a line for each case.

Sample Input

2
0 4
1 0
3
0 20 1
12 0 1
1 10 0
0

Sample Output

4
22

解法1:

所有的原子组成一个集合,每次从中选取两个点,选择一个攻击点,选择一个被攻击点,

d[s]=max(d[s],d[s ^ (1<<j)] +a[i][j]);

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#define maxn 10
using namespace std;
int d[<<]; //表示到达状态s时产生的最大能量
int a[][];
int n;
void init()
{
memset(d,,sizeof(d));
}
void solve()
{
for(int s=;s<(<<n);s++)
{
d[s]=;
for(int i=;i<n;i++)
if(s & (<<i))
{
for(int j=;j<n;j++)
if(s & (<<j))
{
if(i==j)
continue;
d[s]=max(d[s],d[s ^ (<<j)]+a[i][j]); }
}
} }
int main()
{
while(~scanf("%d",&n))
{
if(n==)
break;
init();
for(int i=;i<n;i++)
for(int j=;j<n;j++)
{
scanf("%d",&a[i][j]);
}
solve();
int ans=;
// for(int i=0;i<(1<<n);i++)
// cout<<d[i]<<" ";
//cout<<endl;
//ans=max(ans,d[i]);
printf("%d\n",d[(<<n)-]);
}
return ;
}

解法2:

假设一个数,第i位表示第i个原子是否被灭掉,如果被灭掉则为1,没被灭掉为0,那么所有状态都可以用2^n范围内的数来表示。则初始状态为0,即所有原子都没有消失

  令dp[i]表示达到状态 i 时所产生的最大能量,则答案就是从0~(1<<n)所有状态里释放的最大的那个能量。 需要枚举所有状态。

  假设当前状态是s,从1~n里边枚举主动碰撞的原子 i ,和被动碰撞被消灭掉的原子 j ,则

  dp[s | (1<<j)] = max{dp[s | (1<<j)] , dp[s] + A[i][j]};

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#define maxn 10
using namespace std;
int d[<<]; //表示到达状态s时产生的最大能量
int a[][];
int n;
void init()
{
memset(d,,sizeof(d));
}
void solve()
{
for(int s=;s<(<<n);s++)
{
for(int i=;i<n;i++)
{
if( ! (s & (<<i)) ) //不知为何写成(if( (s & (1 << i)) ))也能过
{
for(int j=;j<n;j++)
{
if(i==j)
continue;
if(s & (<<j))
continue;
d[s |(<<j)] = max(d[s | (<<j)],d[s]+a[i][j]);
}
}
}
} }
int main()
{
while(~scanf("%d",&n))
{
if(n==)
break;
init();
for(int i=;i<n;i++)
for(int j=;j<n;j++)
{
scanf("%d",&a[i][j]);
}
solve();
int ans=;
for(int i=;i<(<<n);i++)
ans=max(ans,d[i]);
printf("%d\n",ans); }
return ;
}

zoj 3471(状态压缩DP,类似于点集配对)的更多相关文章

  1. zoj 3471(状态压缩)

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=4257 dp[state]表示当前状态为state时的所能获得的最大值 ...

  2. ZOJ 3471 【状态压缩DP】

    题意: 有n种化学物质,他们彼此反应会有一种消失并释放出能量. 给出矩阵,第i行j列代表i和j反应j消失释放的能量. 求最大释放多少能量. 思路: 状态压缩DP,我是这么想的. 利用二进制0代表该物质 ...

  3. ZOJ 2563 Long Dominoes(状态压缩DP)

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1563 题目大意:在h*w的矩阵里铺满1*3的小矩阵,共有多少种方法 ...

  4. poj 3311 Hie with the Pie(状态压缩dp)

    Description The Pizazz Pizzeria prides itself or more (up to ) orders to be processed before he star ...

  5. Travelling(spfa+状态压缩dp)

    题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=3001 Travelling Time Limit: 6000/3000 MS (Java/Others ...

  6. Gym-101915D Largest Group 最大独立集 Or 状态压缩DP

    题面题意:给你N个男生,N个女生,男生与男生之间都是朋友,女生之间也是,再给你m个关系,告诉你哪些男女是朋友,最后问你最多选几个人出来,大家互相是朋友. N最多为20 题解:很显然就像二分图了,男生一 ...

  7. 状态压缩DP(大佬写的很好,转来看)

    奉上大佬博客 https://blog.csdn.net/accry/article/details/6607703 动态规划本来就很抽象,状态的设定和状态的转移都不好把握,而状态压缩的动态规划解决的 ...

  8. hoj2662 状态压缩dp

    Pieces Assignment My Tags   (Edit)   Source : zhouguyue   Time limit : 1 sec   Memory limit : 64 M S ...

  9. POJ 3254 Corn Fields(状态压缩DP)

    Corn Fields Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 4739   Accepted: 2506 Descr ...

随机推荐

  1. 【BZOJ2006】超级钢琴(RMQ,priority_queue)

    题意: 思路: 用三元组(i, l, r)表示右端点为i,左端点在[l, r]之间和最大的区间([l, r]保证是对于i可行右端点区间的一个子区间),我们用堆维护一些这样的三元组. 堆中初始的元素为每 ...

  2. BZOJ1126: [POI2008]Uci

    $n \leq 100,m \leq 100$,$n*m$的01矩形,问从左下角开始往上走,每次转弯只能向右,不能经过重复点,不能撞到1,到达点$(x,y)$的方案数,$mod \ \ k$. 感人肺 ...

  3. isinstance()和issubclass()

    内置函数中有个两个函数经常用到 isinstance()                    对象 是否是 类 的一个对象 from collections import Iterable prin ...

  4. request对象学习

    import java.io.IOException; import java.util.Enumeration; import javax.servlet.ServletException; imp ...

  5. Spring错误异常重试框架guava-retrying

    官网:https://github.com/rholder/guava-retrying Maven:https://mvnrepository.com/artifact/com.github.rho ...

  6. maven之发布项目到nexus【clean deploy命令】

    原文:http://m.blog.csdn.net/article/details?id=49667971 当我们的项目开发完成以后,可能要进行发布(如果是独立的项目,就不需要发布啦,如果是模块项目, ...

  7. 百度统计的JS脚本原理解析

    一句话:在你的网站上加载百度统计的脚本,这个脚本会收集你的本地信息,然后发送给百度统计网站 https://blog.csdn.net/iqzq123/article/details/8877645 ...

  8. [转]JAVA对象容器

    要用Java实现记事本的功能.首先列出记事本所需功能: 可以添加记录(字符串): 可以获得记录条数: 可以删除其中某一条记录: 可以获得指定第几条的记录: 可以列出所有的记录. 如果这个记事本是某个大 ...

  9. CentOS 6.x Radius

    CentOS 6.x Radius 一.   实现环境: 1.系统:CentOS  release  6.6 (Final) 2.需要软件包: 1) freeradius-2.1.12-6.e16.x ...

  10. 配置activeMQ

    一.加入以下的库 并配置好路径 ws2_32.lib;Mswsock.lib;cppunit.lib;libapr-1.lib;libapriconv-1.lib;libaprutil-1.lib;l ...