bzoj 1911: [Apio2010]特别行动队【斜率优化dp】
仔细想想好像没学过斜率优化..
很容易推出状态转移方程\( f[i]=max{f[j]+a(s[i]-s[j])^2+b(s[i]-s[j])+c} \)
然后考虑j的选取,如果选j优于选k,那么:
\]
\]
\]
\]
\]
注意这里的2a一定要除到左边不然会WA...(可能是精度问题)
然后维护这样一个斜率单调的双端队列即可。
#include<iostream>
#include<cstdio>
using namespace std;
const int N=1000005;
int n,a,b,c,d[N],q[N],l,r;
long long f[N],s[N];
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
inline double wk(int x,int y)
{
return (double)(f[y]-f[x]+a*(s[y]*s[y]-s[x]*s[x])+b*(s[x]-s[y]))/(double)(2*a*(s[y]-s[x]));
}
int main()
{
n=read(),a=read(),b=read(),c=read();
for(int i=1;i<=n;i++)
d[i]=read(),s[i]=s[i-1]+d[i];
for(int i=1;i<=n;i++)
{
while(l<r&&wk(q[l],q[l+1])<s[i])
l++;
f[i]=f[q[l]]+a*(s[i]-s[q[l]])*(s[i]-s[q[l]])+b*(s[i]-s[q[l]])+c;
while(l<r&&wk(q[r-1],q[r])>wk(q[r],i))
r--;
q[++r]=i;
}
printf("%lld\n",f[n]);
return 0;
}
bzoj 1911: [Apio2010]特别行动队【斜率优化dp】的更多相关文章
- BZOJ 1911: [Apio2010]特别行动队 [斜率优化DP]
1911: [Apio2010]特别行动队 Time Limit: 4 Sec Memory Limit: 64 MBSubmit: 4142 Solved: 1964[Submit][Statu ...
- bzoj 1911: [Apio2010]特别行动队 -- 斜率优化
1911: [Apio2010]特别行动队 Time Limit: 4 Sec Memory Limit: 64 MB Description Input Output Sample Input 4 ...
- bzoj1911[Apio2010]特别行动队 斜率优化dp
1911: [Apio2010]特别行动队 Time Limit: 4 Sec Memory Limit: 64 MBSubmit: 5057 Solved: 2492[Submit][Statu ...
- [APIO2010]特别行动队 --- 斜率优化DP
[APIO2010]特别行动队 题面很直白,就不放了. 太套路了,做起来没点感觉了. \(dp(i)=dp(j)+a*(s(i)-s(j))^{2}+b*(s(i)-s(j))+c\) 直接推出一个斜 ...
- APIO2010 特别行动队 & 斜率优化DP算法笔记
做完此题之后 自己应该算是真正理解了斜率优化DP 根据状态转移方程$f[i]=max(f[j]+ax^2+bx+c),x=sum[i]-sum[j]$ 可以变形为 $f[i]=max((a*sum[j ...
- bzoj1911 [Apio2010]特别行动队——斜率优化DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1911 相当明显的斜率优化,很好做: 注意slp里面要有(double),以免出现精度问题. ...
- 【BZOJ1911】[Apio2010]特别行动队 斜率优化DP
想了好久啊....——黑字为第一次更新.——这里是第二次更新,维护上下凸包据题而论,第一种方法是化式子的方法,需要好的化式子的方法,第二种是偏向几何,十分好想,纯正的维护凸包的方法,推荐. 用了我感觉 ...
- bzoj 1911 [Apio2010]特别行动队(斜率优化+DP)
1911: [Apio2010]特别行动队 Time Limit: 4 Sec Memory Limit: 64 MBSubmit: 3191 Solved: 1450[Submit][Statu ...
- BZOJ 1911: [Apio2010]特别行动队( dp + 斜率优化 )
sum为战斗力的前缀和 dp(x) = max( dp(p)+A*(sumx-sump)2+B*(sumx-sump)+C )(0≤p<x) 然后斜率优化...懒得写下去了... ------- ...
- bzoj 1911: [Apio2010]特别行动队
#include<cstdio> #include<iostream> #define M 1000009 #define ll long long using namespa ...
随机推荐
- POJ 1094 Sorting It All Out【拓扑排序】
题目链接: http://poj.org/problem?id=1094 题意: 给定前n个字母的大小关系,问你是否 根据前xxx个关系得到上升序列 所有关系都无法确定唯一的一个序列 第xxx个关系导 ...
- hdu6200 mustedge mustedge mustedge (并查集+dfs序树状数组)
题意 给定一个n个点m条边无向图(n,m<=1e5) 支持两个操作 1.添加一条边 2.询问点u到点v的所有路径中必经边的条数 操作数<=1e5 分析 第一眼看起来像是要动态维护无向图的边 ...
- 44444444444444444444444444444444dddddddddd66666666666666666666666666
dddddddddddddddddddddddddddddddddddddddddddddddddddd
- leetcode笔记:Longest Substring Without Repeating Characters
一. 题目描写叙述 Given a string, find the length of the longest substring without repeating characters. For ...
- Meteor模板
Meteor模板使用三个顶级标签.前两个是 head 和 body 标签.这些标签和在普通的HTML中做的工作一样.第三个标签 template.这是我们将HTML连接到JavaScript的地方. ...
- NoSQL之Memcached
一.Memcached概念 Memcached是NoSQL产品之中的一个,是一个暂时性键值存储NoSQL数据库,过去被大量使用在互联网站点中,作为应用和数据库之间的缓存层,大大提高查询和訪问速度. M ...
- C#使用SharpZipLib压缩解压文件
#region 加压解压方法 /// <summary> /// 功能:压缩文件(暂时只压缩文件夹下一级目录中的文件,文件夹及其子级被忽略) /// </summary> // ...
- wsdl2objc定制(一)namespace
1.问题抛出: 如今还是有非常多人使用 wsdl2objc 来调用webservice,可是有时候会有不开心的事情发生, <soap:Envelope xmlns:soap="http ...
- LightOJ - 1317 Throwing Balls into the Baskets 期望
题目大意:有N个人,M个篮框.K个回合,每一个回合每一个人能够投一颗球,每一个人的命中率都是同样的P.问K回合后,投中的球的期望数是多少 解题思路:由于每一个人的投篮都是一个独立的事件.互不影响.所以 ...
- Camera 模组
http://wenku.baidu.com/view/89d8c21014791711cc7917d5.html http://wenku.baidu.com/view/0cec54d5c1c708 ...