Problem Description

Network flow is a well-known difficult problem for ACMers. Given a graph, your task is to find out the maximum flow for the weighted directed graph.

Input

The first line of input contains an integer T, denoting the number of test cases.
For each test case, the first line contains two integers N and M, denoting the number of vertexes and edges in the graph. (2 <= N <= 15, 0 <= M <= 1000)
Next M lines, each line contains three integers X, Y and C, there is an edge from X to Y and the capacity of it is C. (1 <= X, Y <= N, 1 <= C <= 1000)

Output

For each test cases, you should output the maximum flow from source 1 to sink N.

Sample Input

2
3 2
1 2 1
2 3 1
3 3
1 2 1
2 3 1
1 3 1

Sample Output

Case 1: 1
Case 2: 2
解题思路:Dicic实现,即每个阶段先进行1次bfs给图分层,然后在该图上进行1次或多次寻找增广路,如果当前层次图中已找不到增广路,就重新给图分层,然后继续找增广路,只要t的level小于0就说明当前网络已达到最大流。时间复杂度大概为O(|E||V|2)。
AC代码一(312ms):
 #include<bits/stdc++.h>
using namespace std;
const int INF=0x3f3f3f3f;
const int maxn=;//int cnt=1;
struct edge{ int to, cap; size_t rev;
edge(int _to, int _cap, size_t _rev) :to(_to), cap(_cap), rev(_rev){}//构造函数,初始化结构体变量
};//指向节点to,边容量是cap,rev是记录为当前邻接点to反向边的编号
vector<edge> G[maxn];//邻接表,G[i][j]表示节点i连接的第j条边包含的所有信息
int t,n,m,x,y,c,level[maxn];//level数组在bfs时为分层图所用
void add_edge(int from,int to,int cap){//向图中增加一条从s到t容量为cap的边
G[from].push_back(edge( to, cap, G[to].size() ));
G[to].push_back(edge( from, , G[from].size() - ));//关键:反向建边,初始流量为0
}
//bfs给图分层次
void bfs(int s){
memset(level,-,sizeof(level));//刚开始每个节点的层次置为-1
queue<int> que;//队列实现bfs
level[s]=;//源点s为第0层
que.push(s);
while(!que.empty()){//给图分层
int v=que.front();que.pop();
for(size_t i=;i<G[v].size();++i){//遍历节点v与之相连的每条边
edge &e=G[v][i];//取出与节点v相连的第i条边
if(e.cap>&&level[e.to]<){//如果边残余流量大于0,且节点e.to还未分层
level[e.to]=level[v]+;//节点e.to的层次为指向它的节点v所在层次数加1
que.push(e.to);
}
}
}
}
//dfs寻找增广路,寻找当前图中s-->t的一条增广路
int dfs(int v,int t,int f){//v->t(t为汇点),当前增广路径上的最小剩余流量为f
if(v==t)return f;//到达汇点t
for(size_t i=;i<G[v].size();++i){//遍历节点v与之相连的每条边
edge &e=G[v][i];//取出与节点v相连的第i条边
if(e.cap> && level[v]<level[e.to]){//如果该边残流量大于0,且邻接点e.to是v的下一级,就增广下去
//cout<<"当前遍历到的点v:"<<v<<",邻接点to:"<<e.to<<endl;
int d=dfs(e.to,t,min(f,e.cap));//维护当前增广路上最小的剩余流量f
if(d>){//若f>0,说明找到了一条增广路
//cout<<v<<"-->"<<e.to<<",边容量为:"<<e.cap<<endl;
e.cap-=d;//正向边流量减去f
G[e.to][e.rev].cap+=d;//反向边流量加上f
return d;//沿着增广路回溯到源点s,不会在途中去深搜其他点,返回当前增广路上的最小剩余流量
}
}
}
return ;//否则说明没有增广路,返回0
}
//Dinic算法实现最大流,每个阶段执行完一次bfs分层之后,只需查找当前层次图中是否还增广路即可
int max_flow(int s,int t){
int flow=;
while(){
bfs(s);//每个阶段先bfs将图分层标记
if(level[t]<)return flow;
//如果分层之后,汇点t的层次小于0,即未被分层,说明再无增广路,则直接返回当前最大流量
int f=dfs(s,t,INF);
//cout<<"第"<<cnt++<<"次的最小剩余容量为:"<<f<<endl;
while(f>){//在该层次图中找到增广路
flow+=f;//累加到最大流中
f=dfs(s,t,INF);//继续找该层次图中是否还有增广路,直到f为0,
//cout<<"第"<<cnt++<<"次的最小剩余容量为:"<<f<<endl;
}
}
}
int main(){
while(~scanf("%d",&t)){
for(int cas=;cas<=t;++cas){
scanf("%d%d",&n,&m);//cnt=1;
for(int i=;i<=n;++i)G[i].clear();
while(m--){
scanf("%d%d%d",&x,&y,&c);
add_edge(x,y,c);
}
printf("Case %d: %d\n",cas,max_flow(,n));
}
}
return ;
}

AC代码二(93ms):当前弧优化Dinic算法。

 #include<bits/stdc++.h>
using namespace std;
const int INF=0x3f3f3f3f;
const int maxn=;
struct edge{ int to,cap;size_t rev;
edge(int _to, int _cap, size_t _rev):to(_to),cap(_cap),rev(_rev){}
};
int T,n,m,x,y,c,level[maxn];queue<int> que;vector<edge> G[maxn];size_t curfir[maxn];
void add_edge(int from,int to,int cap){
G[from].push_back(edge(to,cap,G[to].size()));
G[to].push_back(edge(from,,G[from].size()-));
}
bool bfs(int s,int t){
memset(level,-,sizeof(level));
while(!que.empty())que.pop();
level[s]=;
que.push(s);
while(!que.empty()){
int v=que.front();que.pop();
for(size_t i=;i<G[v].size();++i){
edge &e=G[v][i];
if(e.cap>&&level[e.to]<){
level[e.to]=level[v]+;
que.push(e.to);
}
}
}
return level[t]<?false:true;
}
int dfs(int v,int t,int f){
if(v==t)return f;
for(size_t &i=curfir[v];i<G[v].size();++i){
edge &e=G[v][i];
if(e.cap>&&(level[v]+==level[e.to])){
int d=dfs(e.to,t,min(f,e.cap));
if(d>){
e.cap-=d;
G[e.to][e.rev].cap+=d;
return d;
}
}
}
return ;
}
int max_flow(int s,int t){
int f,flow=;
while(bfs(s,t)){
memset(curfir,,sizeof(curfir));
while((f=dfs(s,t,INF))>)flow+=f;
}
return flow;
}
int main(){
while(~scanf("%d",&T)){
for(int cas=;cas<=T;++cas){
scanf("%d%d",&n,&m);
for(int i=;i<=n;++i)G[i].clear();
while(m--){
scanf("%d%d%d",&x,&y,&c);
add_edge(x,y,c);
}
printf("Case %d: %d\n",cas,max_flow(,n));
}
}
return ;
}

题解报告:hdu 3549 Flow Problem(最大流入门)的更多相关文章

  1. HDU 3549 Flow Problem(最大流)

    HDU 3549 Flow Problem(最大流) Time Limit: 5000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/ ...

  2. 网络流 HDU 3549 Flow Problem

    网络流 HDU 3549 Flow Problem 题目:pid=3549">http://acm.hdu.edu.cn/showproblem.php?pid=3549 用增广路算法 ...

  3. hdu 3549 Flow Problem

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=3549 Flow Problem Description Network flow is a well- ...

  4. hdu 3549 Flow Problem【最大流增广路入门模板题】

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=3549 Flow Problem Time Limit: 5000/5000 MS (Java/Others ...

  5. hdu 3549 Flow Problem (网络最大流)

    Flow Problem Time Limit: 5000/5000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Tota ...

  6. hdu 3549 Flow Problem Edmonds_Karp算法求解最大流

    Flow Problem 题意:N个顶点M条边,(2 <= N <= 15, 0 <= M <= 1000)问从1到N的最大流量为多少? 分析:直接使用Edmonds_Karp ...

  7. HDU 3549 Flow Problem 网络流(最大流) FF EK

    Flow Problem Time Limit: 5000/5000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others) Tot ...

  8. HDU 3549 Flow Problem (最大流ISAP)

    Flow Problem Time Limit: 5000/5000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Tota ...

  9. hdu 3549 Flow Problem (Dinic)

    Flow ProblemTime Limit: 5000/5000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total ...

  10. hdu 3549 Flow Problem 最大流问题 (模板题)

    Flow Problem Time Limit: 5000/5000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Tota ...

随机推荐

  1. Apache Qpid 高可用集群

    一.RHCS RHCS是Red Hat Cluster Suite(红帽子集群套件)的缩写.RHCS是一个功能完备的集群应用解决方案,它从应用的前端访问到后端的数据存储都提供了一个行之有效的集群架构实 ...

  2. WPF绑定各种数据源之object数据源

    一.WPF绑定各种数据源索引 WPF 绑定各种数据源之Datatable WPF绑定各种数据源之object数据源 WPF绑定各种数据源之xml数据源 WPF绑定各种数据源之元素控件属性 Bindin ...

  3. 设置GridCtrl中的Checkbox 为不可编辑

    m_Grid.SetCellType(index, 1, CGridCtrl::CellType_Check);   //设置第index行.第一列的单元格为类似CheckBox的模样    m_Gr ...

  4. vc6.0的一些快捷键

    1.检测程序中的括号是否匹配    把光标移动到需要检测的括号(如大括号{}.方括号[].圆括号()和尖括号<>)前面,键入快捷键“Ctrl+]”.如果括号匹配正确,光标就跳到匹配的括号处 ...

  5. 设计模式学习笔记——State状态模式

    从一个类中,将有关状态的处理分离出来,独立成类,并面向接口编程.作用是可以简化代码,避免过多的条件判断:if-else-

  6. filename extension

    题目描述 Please create a function to extract the filename extension from the given path,return the extra ...

  7. HDU 3714/UVA1476 Error Curves

    Error Curves Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Tota ...

  8. Linux时间子系统之四:定时器的引擎:clock_event_device【转】

    本文转载自:http://blog.csdn.net/droidphone/article/details/8017604 版权声明:本文为博主原创文章,未经博主允许不得转载.   目录(?)[+] ...

  9. Web Assembly背景

    Javascript ,也叫Ecma script,  是这家伙用了 10 天时间赶出来的.. 所以,各位程序猿们,如果你觉得老板 10 天要你们上线一个 App 是一个丧心病狂的事情,那么可以多想想 ...

  10. RxJava 参考文档

    /*************************************************************** * RxJava 参考文档 * 说明: * 最近无意中发现RxJava ...